Resumo
Agro-industrial wastes such as sugarcane bagasse, wheat bran, rice bran, corn cob and wheat straw are cheapest and abundantly available natural carbon sources. The present study was aimed to production of amylase and xylanase simultaneously using agro-industrial waste as the sole carbon source. Seven thermophilic strains of actinomycete were isolated from the mushroom compost. Among of these, strain designated MSC702 having high potential to utilize agro-industrial wastes for the production of amylase and xylanase. Strain MSC702 was identified as novel species of Streptomyces through morphological characterization and 16S rRNA gene sequence. Enzyme production was determined using 1% (w/v) of various agro-industrial waste in production medium containing (g/100mL): K2HPO4(0.1), (NH4)2SO4(0.1), NaCl (0.1), MgSO4(0.1) at pH 7.0 after incubation of 48 h at 50°C. The amylase activity (373.89 IU/mL) and xylanase activity (30.15 IU/mL) was maximum in rice bran. The decreasing order of amylase and xylanase activity in different type of agro-industrial wastes were found rice bran (RB) > corn cob (CC) > wheat bran (WB) > wheat straw (WS) > sugarcane bagasse (SB) and rice bran (RB) > wheat bran (WB) > wheat straw (WS) > sugarcane bagasse (SB) > corn cob (CC), respectively. Mixed effect of different agro-industrial wastes was examined in different ratios. Enzyme yield of amylase and xylanase was ~1.3 and ~2.0 fold higher with RB: WB in 1:2 ratio.(AU)
Assuntos
Humanos , Agroindústria/estatística & dados numéricos , Amilases , Endo-1,4-beta-Xilanases/análiseResumo
Actinomycetes from earthworm castings were isolated and screened for their antimicrobial activity and industrial enzymes. A total of 48 isolates were obtained from 12 samples of earthworm castings. Highest numbers of isolates were recovered from forest site (58.33 %) as compared to grassland (25%) and agricultural land (16.66%). The growth patterns, mycelial coloration of abundance actinomycetes were documented. The dominant genera Identified by cultural, morphological and physiological characteristics were Streptomyces (60.41%) followed by Streptosporangium (10.41%), Saccharopolyspora (6.25%) and Nocardia (6.25%). Besides these, other genera like Micromonospora, Actinomadura, Microbispora, Planobispora and Nocardiopsis were also recovered but in low frequency. Among the 48 isolates, 52.08% were found active against one or more test organisms. Out of 25 active isolates 16% showed activity against bacterial, human fungal as well as phytopathogens. Among 48 isolates 38, 32, 21, 20, 16 and 14 produced enzyme amylase, caseinase, cellulase, gelatinase, xylanase and lipase respectively while 10 isolates produced all the enzymes. More interestingly 2, 3, and 1 isolates produced amylase, xylanase and lipase at 45°C respectively. In the view of its antimicrobial activity as well as enzyme production capability the genus Streptomyces was dominant. The isolate EWC 7(2) was most promising on the basis of its interesting antimicrobial activity and was identified as Streptomyces rochei. The results of these findings have increased the scope of finding industrially important actinomycetes from earthworm castings and these organisms could be promising sources for industrially important molecules or enzymes.