Resumo
The present study investigated whether the same temperature-humidity index (THI) values under different conditions of air temperature and relative humidity (RH) would affect the thermoregulatory, nutritional, and behavioral responses of laying hens. One hundred twenty Hy-Line Brown laying hens (60-weeks-old) were divided equally in two environmental chambers: 26 °C with 70% RH (hRH75) and 30 °C with 30% RH (hT75) for 28 days. The two ambient environments (hRH75 and hT75) had an identical THI value of 75, calculated using an empirical formula for laying hens. Neither hRH75 nor hT75 affected rectal and body-surface temperatures and heart and respiratory rates. The concentration of volatile fatty acids in fecal excreta were altered by the thermal treatments. hT75 vs. hRH75 decreased the proportion of acetate and increased the proportion of propionate in fecal samples. hT75 vs. hRH75 lowered the digestibility of dry matter, crude protein, and neutral detergent fiber at 14 days. Thermal treatments did not affect heat stress-associated behavioral responses including feeding, drinking, panting, and wing elevation at any stage. Laying hens exposed to the same THI at different temperatures and RH exhibit equal physiological responses including rectal and body-surface temperatures, heart and respiratory rates, and behavioral responses. Nonetheless, high-temperature treatment (hT75; 30 °C and 30% RH) vs. low temperature treatment (hRH75; 26 °C and 70% RH) affects nutrient digestibility and gut metabolites, suggesting that there are negligible but discernable responses to temperature in the gut physiology.(AU)
Assuntos
Animais , Feminino , Galinhas/fisiologia , Resposta ao Choque Térmico/fisiologia , Comportamento Alimentar/fisiologia , Temperatura , NutrientesResumo
Freezing temperatures are a major challenge for life at the poles. Decreased membrane fluidity, uninvited secondary structure formation in nucleic acids, and protein cold-denaturation all occur at cold temperatures. Organisms adapted to polar regions possess distinct mechanisms that enable them to survive in extremely cold environments. Among the cold-induced proteins, cold shock protein (Csp) family proteins are the most prominent. A gene coding for a Csp-family protein, cspB, was cloned from an arctic bacterium, Polaribacter irgensii KOPRI 22228, and overexpression of cspB greatly increased the freeze-survival rates of Escherichia coli hosts, to a greater level than any previously reported Csp. It also suppressed the cold-sensitivity of an E. coli csp-quadruple deletion strain, BX04. Sequence analysis showed that this protein consists of a unique domain at its N-terminal end and a well conserved cold shock domain at its C-terminal end. The most common mechanism of Csp function in cold adaption is melting of the secondary structures in RNA and DNA molecules, thus facilitating transcription and translation at low temperatures. P. irgensii CspB bound to oligo(dT)-cellulose resins, suggesting single-stranded nucleic acid-binding activity. The unprecedented level of freeze-tolerance conferred by P. irgensii CspB suggests a crucial role for this protein in survival in polar environments.(AU)