Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci. agric ; 74(1): 51-59, 2017. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1497616

Resumo

Artificial neural networks (ANN) are computational models inspired by the neural systems of living beings capable of learning from examples and using them to solve problems such as non-linear prediction, and pattern recognition, in addition to several other applications. In this study, ANN were used to predict the value of the area under the disease progress curve (AUDPC) for the tomato late blight pathosystem. The AUDPC is widely used by epidemiologic studies of polycyclic diseases, especially those regarding quantitative resistance of genotypes. However, a series of six evaluations over time is necessary to obtain the final area value for this pathosystem. This study aimed to investigate the utilization of ANN to construct an AUDPC in the tomato late blight pathosystem, using a reduced number of severity evaluations. For this, four independent experiments were performed giving a total of 1836 plants infected with Phytophthora infestans pathogen. They were assessed every three days, comprised six opportunities and AUDPC calculations were performed by the conventional method. After the ANN were created it was possible to predict the AUDPC with correlations of 0.97 and 0.84 when compared to conventional methods, using 50 % and 67 % of the genotype evaluations, respectively. When using the ANN created in an experiment to predict the AUDPC of the other experiments the average correlation was 0.94, with two evaluations, 0.96, with three evaluations, between the predicted values of the ANN and they were observed in six evaluations. We present in this study a new paradigm for the use of AUDPC information in tomato experiments faced with P. infestans. This new proposed paradigm might be adapted to different pathosystems.


Assuntos
Doenças das Plantas , Phytophthora infestans , Previsões/métodos , Redes Neurais de Computação , Biologia Computacional , Solanum lycopersicum , Melhoramento Vegetal
2.
Sci. agric ; 74(3): 203-207, mai./jun. 2017. tab, ilus, graf
Artigo em Inglês | VETINDEX | ID: biblio-1497640

Resumo

Germplasm classification by species requires specific knowledge on/of the culture of interest. Therefore, efforts aimed at automation of this process are necessary for the efficient management of collections. Automation of germplasm classification through artificial neural networks may be a viable and less laborious strategy. The aims of this study were to verify the classification potential of Capsicum accessions regarding/ the species based on morphological descriptors and artificial neural networks, and to establish the most important descriptors and the best network architecture for this purpose. Five hundred and sixty-four plants from 47 Brazilian Capsicum accessions were evaluated. Neural networks of multilayer perceptron type were used in order to automate the species identification through 17 morphological descriptors. Six network architectures were evaluated, and the number of neurons in the hidden layer ranged from 1 to 6. The relative importance of morphological descriptors in the classification process was established by Garson's method. Corolla color, corolla spot color, calyx annular constriction, fruit shape at pedicel attachment, and fruit color at mature stage were the most important descriptors. The network architecture with 6 neurons in the hidden layer is the most appropriate in this study. The possibility of classifying Capsicum plants regarding/ the species through artificial neural networks with 100 % accuracy was verified.


Assuntos
Automação , Banco de Sementes , Capsicum , Redes Neurais de Computação , Classificação , Inteligência Artificial , Sistemas Computacionais
3.
Sci. agric. ; 74(3): 203-207, mai./jun. 2017. tab, ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-15650

Resumo

Germplasm classification by species requires specific knowledge on/of the culture of interest. Therefore, efforts aimed at automation of this process are necessary for the efficient management of collections. Automation of germplasm classification through artificial neural networks may be a viable and less laborious strategy. The aims of this study were to verify the classification potential of Capsicum accessions regarding/ the species based on morphological descriptors and artificial neural networks, and to establish the most important descriptors and the best network architecture for this purpose. Five hundred and sixty-four plants from 47 Brazilian Capsicum accessions were evaluated. Neural networks of multilayer perceptron type were used in order to automate the species identification through 17 morphological descriptors. Six network architectures were evaluated, and the number of neurons in the hidden layer ranged from 1 to 6. The relative importance of morphological descriptors in the classification process was established by Garson's method. Corolla color, corolla spot color, calyx annular constriction, fruit shape at pedicel attachment, and fruit color at mature stage were the most important descriptors. The network architecture with 6 neurons in the hidden layer is the most appropriate in this study. The possibility of classifying Capsicum plants regarding/ the species through artificial neural networks with 100 % accuracy was verified.(AU)


Assuntos
Redes Neurais de Computação , Automação , Capsicum , Banco de Sementes , Inteligência Artificial , Classificação , Sistemas Computacionais
4.
Sci. agric. ; 74(1): 51-59, 2017. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-684144

Resumo

Artificial neural networks (ANN) are computational models inspired by the neural systems of living beings capable of learning from examples and using them to solve problems such as non-linear prediction, and pattern recognition, in addition to several other applications. In this study, ANN were used to predict the value of the area under the disease progress curve (AUDPC) for the tomato late blight pathosystem. The AUDPC is widely used by epidemiologic studies of polycyclic diseases, especially those regarding quantitative resistance of genotypes. However, a series of six evaluations over time is necessary to obtain the final area value for this pathosystem. This study aimed to investigate the utilization of ANN to construct an AUDPC in the tomato late blight pathosystem, using a reduced number of severity evaluations. For this, four independent experiments were performed giving a total of 1836 plants infected with Phytophthora infestans pathogen. They were assessed every three days, comprised six opportunities and AUDPC calculations were performed by the conventional method. After the ANN were created it was possible to predict the AUDPC with correlations of 0.97 and 0.84 when compared to conventional methods, using 50 % and 67 % of the genotype evaluations, respectively. When using the ANN created in an experiment to predict the AUDPC of the other experiments the average correlation was 0.94, with two evaluations, 0.96, with three evaluations, between the predicted values of the ANN and they were observed in six evaluations. We present in this study a new paradigm for the use of AUDPC information in tomato experiments faced with P. infestans. This new proposed paradigm might be adapted to different pathosystems.(AU)


Assuntos
Redes Neurais de Computação , Doenças das Plantas , Phytophthora infestans , Previsões/métodos , Biologia Computacional , Solanum lycopersicum , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA