Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ciênc. rural (Online) ; 52(9): e20210275, 2022. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1364731

Resumo

When modeling growth curves, it should be considered that longitudinal data may show residual autocorrelation, and, if this characteristic is not considered, the results and inferences may be compromised. The Bayesian approach, which considers priori information about studied phenomenon has been shown to be efficient in estimating parameters. However, as it is generally not possible to obtain marginal distributions analytically, it is necessary to use some method, such as the weighted resampling method, to generate samples of these distributions and thus obtain an approximation. Among the advantages of this method, stand out the generation of independent samples and the fact that it is not necessary to evaluate convergence. In this context, the objective of this work research was: to present the Bayesian nonlinear modeling of the coffee tree height growth, irrigated and non-irrigated (NI), considering the residual autocorrelation and the nonlinear Logistic, Brody, von Bertalanffy and Richard models. Among the results, it was found that, for NI plants, the Deviance Information Criterion (DIC) and the Criterion of density Predictive Ordered (CPO), indicated that, among the evaluated models, the Logistic model is the one that best describes the height growth of the coffee tree over time. For irrigated plants, these same criteria indicated the Brody model. Thus, the growth of the non-irrigated and irrigated coffee tree followed different growth patterns, the height of the non-irrigated coffee tree showed sigmoidal growth with maximum growth rate at 726 days after planting and the irrigated coffee tree starts its development with high growth rates that gradually decrease over time.


Na modelagem de curvas de crescimento deve-se considerar que dados longitudinais podem apresentar autocorrelação residual, sendo que, se tal característica não é considerada, os resultados e inferências podem ser comprometidos. A abordagem bayesiana, que considera informações à priori sobre o fenômeno em estudo tem se mostrado eficiente na estimação de parâmetros. No entanto, como geralmente não é possível obter as distribuições marginais de forma analítica, faz-se necessário a utilização de algum método, como o método de reamostragem ponderada, para gerar amostras dessas distribuições e assim obter uma aproximação para as mesmas. Dentre as vantagens desse método, destaca-se a geração de amostras independentes e o fato de não ser necessário avaliar convergência. Diante desse contexto, o objetivo deste trabalho foi apresentar a modelagem não linear bayesiana do crescimento em altura de plantas do cafeeiro, irrigadas e não irrigadas (NI), considerando a autocorrelação residual e os modelos não lineares Logístico, Brody, von Bertalanffy e Richards. Em vista dos resultados, verificou-se que, para as plantas NI, o DIC e CPOc, indicaram que, dentre os modelos avaliados, o modelo Logístico é o que melhor descreve o crescimento em altura do cafeeiro ao longo do tempo. E, para as plantas irrigadas, esses mesmos critérios indicaram o modelo Brody. Assim, o crescimento da planta do cafeeiro não irrigado e irrigado seguiram padrões de crescimento distintos, a altura do cafeeiro não irrigado apresentou crescimento sigmoidal com taxa máxima de crescimento aos 726 dias após o plantio, já o cafeeiro irrigado inicia seu desenvolvimento com altas taxas de crescimento que vão diminuindo aos poucos com o tempo.


Assuntos
Teorema de Bayes , Dinâmica não Linear , Coffea/crescimento & desenvolvimento , Padrões de Referência
2.
Ciênc. rural (Online) ; 47(8): 1-7, 2017. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1480047

Resumo

ABSTRACT: This study aimed to verify if the growth pattern of coffee berries, considering fresh mass accumulation over time, is double sigmoid and to select the most suitable nonlinear model to describe such behavior. Data used consisted of fourteen longitudinal observations of average fresh mass of coffee berries obtained in an experiment with the cultivar Obatã IAC 1669-20. The fits provided by the Logistic and Gompertz models were compared in their single and double versions. Parameters were estimated using the least squares method using the Gauss-Newton algorithm implemented in the nls function of the R software. It can be concluded that the growth pattern of the coffee fruit, in fresh mass accumulation, is double sigmoid. The double Gompertz and double Logistic models were adequate to describe such a growth curve, with a superiority of the double Logistic model.


RESUMO: O objetivo deste trabalho foi verificar se o padrão de crescimento do fruto do cafeeiro, considerando acúmulo de massa fresca em função do tempo, é realmente duplo sigmoidal e selecionar o modelo não linear mais indicado para descrever tal comportamento. Os dados utilizados são quatorze observações longitudinais de massa fresca média de frutos do cafeeiro obtidos em um experimento com a cultivar Obatã IAC 1669-20. Foram comparados os ajustes fornecidos pelos modelos Logístico e Gompertz em suas versões simples e duplo. A estimação dos parâmetros foi feita pelo método dos mínimos quadrados utilizando o algoritmo de Gauss-Newton implementado na função nls do software R. Pode-se concluir que o padrão de crescimento do fruto do cafeeiro, em acúmulo de massa fresca, é duplo sigmoidal. Os modelos duplo Gompertz e duplo Logístico se mostraram adequados para descrever tal curva de crescimento, com uma superioridade do modelo duplo Logístico.


Assuntos
Coffea/crescimento & desenvolvimento , Dinâmica não Linear , Distribuição Normal , Modelos Logísticos , 24444
3.
Ci. Rural ; 47(8): 1-7, 2017. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-735393

Resumo

ABSTRACT: This study aimed to verify if the growth pattern of coffee berries, considering fresh mass accumulation over time, is double sigmoid and to select the most suitable nonlinear model to describe such behavior. Data used consisted of fourteen longitudinal observations of average fresh mass of coffee berries obtained in an experiment with the cultivar Obatã IAC 1669-20. The fits provided by the Logistic and Gompertz models were compared in their single and double versions. Parameters were estimated using the least squares method using the Gauss-Newton algorithm implemented in the nls function of the R software. It can be concluded that the growth pattern of the coffee fruit, in fresh mass accumulation, is double sigmoid. The double Gompertz and double Logistic models were adequate to describe such a growth curve, with a superiority of the double Logistic model.(AU)


RESUMO: O objetivo deste trabalho foi verificar se o padrão de crescimento do fruto do cafeeiro, considerando acúmulo de massa fresca em função do tempo, é realmente duplo sigmoidal e selecionar o modelo não linear mais indicado para descrever tal comportamento. Os dados utilizados são quatorze observações longitudinais de massa fresca média de frutos do cafeeiro obtidos em um experimento com a cultivar Obatã IAC 1669-20. Foram comparados os ajustes fornecidos pelos modelos Logístico e Gompertz em suas versões simples e duplo. A estimação dos parâmetros foi feita pelo método dos mínimos quadrados utilizando o algoritmo de Gauss-Newton implementado na função nls do software R. Pode-se concluir que o padrão de crescimento do fruto do cafeeiro, em acúmulo de massa fresca, é duplo sigmoidal. Os modelos duplo Gompertz e duplo Logístico se mostraram adequados para descrever tal curva de crescimento, com uma superioridade do modelo duplo Logístico.(AU)


Assuntos
Coffea/crescimento & desenvolvimento , Dinâmica não Linear , Modelos Logísticos , Distribuição Normal , 24444
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA