Resumo
The development of efficient and low-cost genotyping methods is essential to precise genetic characterization of cultivars. Here, we present a system based on fluorescently labeled universal tail sequence primers (UTSP) to resolve microsatellite (SSR) markers as an alternative for molecular fingerprinting of maize. A set of 20 SSRs using the UTSP presented an average polymorphic information content of 0.84, which provided a probability of random identity ranging from 10−7 to 10−14, and a minimum exclusion power of 99.99998 % in a group of 48 tropical maize single-cross hybrids traded in Brazil. The genetic diversity analysis based on multidimensional scaling explained approximately 28 % of the total variance for the first two coordinates, tending to group the hybrids according to their respective origin. Additionally, this genotyping system presented a high distinctiveness capacity, which is widely recommended for genetic purity and fingerprinting analyses. Thus, this marker system has a strong potential as a tool for complementary analysis of distinguishability, uniformity and stability required for cultivar registration.
Assuntos
Hibridização Genética , Marcadores Genéticos , Repetições de Microssatélites , Zea mays , Impressões Digitais de DNA , Técnicas de GenotipagemResumo
The development of efficient and low-cost genotyping methods is essential to precise genetic characterization of cultivars. Here, we present a system based on fluorescently labeled universal tail sequence primers (UTSP) to resolve microsatellite (SSR) markers as an alternative for molecular fingerprinting of maize. A set of 20 SSRs using the UTSP presented an average polymorphic information content of 0.84, which provided a probability of random identity ranging from 10−7 to 10−14, and a minimum exclusion power of 99.99998 % in a group of 48 tropical maize single-cross hybrids traded in Brazil. The genetic diversity analysis based on multidimensional scaling explained approximately 28 % of the total variance for the first two coordinates, tending to group the hybrids according to their respective origin. Additionally, this genotyping system presented a high distinctiveness capacity, which is widely recommended for genetic purity and fingerprinting analyses. Thus, this marker system has a strong potential as a tool for complementary analysis of distinguishability, uniformity and stability required for cultivar registration.(AU)