Resumo
Eleven essential oils (EOs) were evaluated for their antibacterial properties, against Vancomycin-Resistant Enterococci (VRE) and E. coli O157:H7. EOs were introduced into Brain Heart Infusion agar (BHI) (15ml) at a concentration of 0.25 to 2% (vol/vol) to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for each pathogen evaluated. Results showed that the most active essential oils against bacteria tested were thyme oil, with MIC90 and MBC90 for the VRA strains of 0.25% and 0.5%, respectively. Eucalyptus, juniper and clove oils were the least potent agent, with MIC90 and MBC90 of 2%. Furthermore, the inhibitory effect of these EO were evaluated against VRE and E. coli O157:H7, experimentally inoculated (10³ cfu/g) in Feta soft cheese and minced beef meat, which was mixed with different concentrations (0.1%, 0.5% and 1%) of the EO and stored at 7 ºC for 14 days. Out of eucalyptus, juniper, mint, rosemary, sage, clove and thyme oils tested against target bacteria sage and thyme showed the best results. Clove and mint did not show any effect on VRE and E. coli O157:H7 in both kinds of studied foods. The addition of thyme oil at concentrations of 0.5 and 1% caused best significant reduction in the growth rate of VRE and E. coli O157:H7 in cheese and meat at 7 ºC. It is concluded that selected plant EOs can act as potent inhibitors of both microorganisms in a food product. The results revealed the potential of thyme oil as a natural preservative in feta soft cheese and minced beef meat against VRE and E. coli O157:H7 contamination.
Resumo
Eleven essential oils (EOs) were evaluated for their antibacterial properties, against Vancomycin-Resistant Enterococci (VRE) and E. coli O157:H7. EOs were introduced into Brain Heart Infusion agar (BHI) (15ml) at a concentration of 0.25 to 2% (vol/vol) to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for each pathogen evaluated. Results showed that the most active essential oils against bacteria tested were thyme oil, with MIC90 and MBC90 for the VRA strains of 0.25% and 0.5%, respectively. Eucalyptus, juniper and clove oils were the least potent agent, with MIC90 and MBC90 of 2%. Furthermore, the inhibitory effect of these EO were evaluated against VRE and E. coli O157:H7, experimentally inoculated (10³ cfu/g) in Feta soft cheese and minced beef meat, which was mixed with different concentrations (0.1%, 0.5% and 1%) of the EO and stored at 7 ºC for 14 days. Out of eucalyptus, juniper, mint, rosemary, sage, clove and thyme oils tested against target bacteria sage and thyme showed the best results. Clove and mint did not show any effect on VRE and E. coli O157:H7 in both kinds of studied foods. The addition of thyme oil at concentrations of 0.5 and 1% caused best significant reduction in the growth rate of VRE and E. coli O157:H7 in cheese and meat at 7 ºC. It is concluded that selected plant EOs can act as potent inhibitors of both microorganisms in a food product. The results revealed the potential of thyme oil as a natural preservative in feta soft cheese and minced beef meat against VRE and E. coli O157:H7 contamination.