Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci. agric ; 80: e20220056, 2023. tab, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1410169

Resumo

Among the multi-trait models selected to study several traits and environments jointly, the Bayesian framework has been a preferred tool when constructing a more complex and biologically realistic model. In most cases, non-informative prior distributions are adopted in studies using the Bayesian approach. However, the Bayesian approach presents more accurate estimates when informative prior distributions are used. The present study was developed to evaluate the efficiency and applicability of multi-trait multi-environment (MTME) models within a Bayesian framework utilizing a strategy for eliciting informative prior distribution using previous data on rice. The study involved data pertaining to rice (Oryza sativa L.) genotypes in three environments and five crop seasons (2010/2011 until 2014/2015) for the following traits: grain yield (GY), flowering in days (FLOR) and plant height (PH). Variance components, genetic and non-genetic parameters were estimated using the Bayesian method. In general, the informative prior distribution in Bayesian MTME models provided higher estimates of individual narrow-sense heritability and variance components, as well as minor lengths for the highest probability density interval (HPD), compared to their respective non-informative prior distribution analyses. More informative prior distributions make it possible to detect genetic correlations between traits, which cannot be achieved with non-informative prior distributions. Therefore, this mechanism presented to update knowledge for an elicitation of an informative prior distribution can be efficiently applied in rice breeding programs.


Assuntos
Oryza/crescimento & desenvolvimento , Alimentos Geneticamente Modificados/estatística & dados numéricos
2.
Sci. agric ; 76(4): 290-298, July-Aug. 2019. tab
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1497790

Resumo

Genome-wide selection (GWS) is based on a large number of markers widely distributed throughout the genome. Genome-wide selection provides for the estimation of the effect of each molecular marker on the phenotype, thereby allowing for the capture of all genes affecting the quantitative traits of interest. The main statistical tools applied to GWS are based on random regression or dimensionality reduction methods. In this study a new non-parametric method, called Delta-p was proposed, which was then compared to the Genomic Best Linear Unbiased Predictor (G-BLUP) method. Furthermore, a new selection index combining the genetic values obtained by the G-BLUP and Delta-p, named Delta-p/G-BLUP methods, was proposed. The efficiency of the proposed methods was evaluated through both simulation and real studies. The simulated data consisted of eight scenarios comprising a combination of two levels of heritability, two genetic architectures and two dominance status (absence and complete dominance). Each scenario was simulated ten times. All methods were applied to a real dataset of Asian rice (Oryza sativa) aiming to increase the efficiency of a current breeding program. The methods were compared as regards accuracy of prediction (simulation data) or predictive ability (real dataset), bias and recovery of the true genomic heritability. The results indicated that the proposed Delta-p/G-BLUP index outperformed the other methods in both prediction accuracy and predictive ability.

3.
Ci. Rural ; 49(6): e20181008, 2019. tab
Artigo em Inglês | VETINDEX | ID: vti-22643

Resumo

Rice cultivation has great national and global importance, being one of the most produced and consumed cereals in the world and the primary food for more than half of the worlds population. Because of its importance as food, developing efficient methods to select and predict genetically superior individuals in reference to plant traits is of extreme importance for breeding programs. The objective of this research was to evaluate and compare the efficiency of the Delta-p, G-BLUP (Genomic Best Linear Unbiased Predictor), BayesCpi, BLASSO (Bayesian Least Absolute Shrinkage and Selection Operator), Delta-p/G-BLUP index, Delta-p/BayesCpi index, and Delta-p/BLASSO index in the estimation of genomic values and the effects of single nucleotide polymorphisms on phenotypic data associated with rice traits. Use of molecular markers allowed high selective efficiency and increased genetic gain per unit time. The Delta-p method uses the concept of change in allelic frequency caused by selection and the theoretical concept of genetic gain. The Index is based on the principle of combined selection, using the information regarding the additive genomic values predicted via G-BLUP, BayesCpi, BLASSO, or Delta-p. These methods were applied and compared for genomic prediction using nine rice traits: flag leaf length, flag leaf width, panicles number per plant, primary panicle branch number, seed length, seed width, amylose content, protein content, and blast resistance. Delta-p/G-BLUP index had higher predictive abilities for the traits studied, except for amylose content trait in which the method with the highest predictive ability was BayesCpi, being approximately 3% greater than that of the Delta-p/G-BLUP index.(AU)


A cultura do arroz tem grande importância nacional e mundial por ser um dos cereais mais produzidos e consumidos no mundo, caracterizando-se como o principal alimento de mais da metade da população mundial. Em função de sua importância alimentar, desenvolver métodos eficientes que visam a predição e a seleção de indivíduos geneticamente superiores, quanto a características da planta, é de extrema importância para os programas de melhoramento. Diante disso, o objetivo deste trabalho foi avaliar e comparar a eficiência do método Delta-p, G-BLUP, BayesCpi, BLASSO e o índice Delta-p/G-BLUP, índice Delta-p/BayesCpi e índice Delta-p/BLASSO, na estimação de valores genômicos e dos efeitos de marcadores SNPs (Single Nucleotide Polymorphisms) em dados fenotípicos associados a características de arroz. A utilização de marcadores moleculares permite alta eficiência seletiva e o aumento do ganho genético por unidade de tempo. O método Delta-p utiliza o conceito de mudança na frequência alélica devido à seleção e o conceito teórico de ganho genético. O Índice é baseado no princípio da seleção combinada, utiliza conjuntamente as informações dos valores genômicos aditivos preditos via G-BLUP, BayesCpi ou BLASSO e via Delta-p. Estes métodos foram aplicados e comparados quanto à predição genômica utilizando nove características de arroz (Oryza sativa), sendo elas: comprimento da folha bandeira, largura da folha bandeira; número de panículas por planta; número de ramos da panícula primária; comprimento de semente; largura de semente; teor de amilose; teor de proteína; resistência a bruzone. O índice Delta-p/G-BLUP obteve maiores capacidades preditivas para as características estudadas, exceto para a característica Conteúdo de amilose, em que o método que obteve maior capacidade preditiva foi o BayesCpi, sendo aproximadamente 3% superior ao índice Delta-p/G-BLUP.(AU)


Assuntos
Oryza/genética , Oryza/crescimento & desenvolvimento , Melhoramento Genético/métodos , Componentes Genômicos , Polimorfismo de Nucleotídeo Único , Plantas Geneticamente Modificadas
4.
Sci. agric. ; 76(4): 290-298, July-Aug. 2019. tab
Artigo em Inglês | VETINDEX | ID: vti-740882

Resumo

Genome-wide selection (GWS) is based on a large number of markers widely distributed throughout the genome. Genome-wide selection provides for the estimation of the effect of each molecular marker on the phenotype, thereby allowing for the capture of all genes affecting the quantitative traits of interest. The main statistical tools applied to GWS are based on random regression or dimensionality reduction methods. In this study a new non-parametric method, called Delta-p was proposed, which was then compared to the Genomic Best Linear Unbiased Predictor (G-BLUP) method. Furthermore, a new selection index combining the genetic values obtained by the G-BLUP and Delta-p, named Delta-p/G-BLUP methods, was proposed. The efficiency of the proposed methods was evaluated through both simulation and real studies. The simulated data consisted of eight scenarios comprising a combination of two levels of heritability, two genetic architectures and two dominance status (absence and complete dominance). Each scenario was simulated ten times. All methods were applied to a real dataset of Asian rice (Oryza sativa) aiming to increase the efficiency of a current breeding program. The methods were compared as regards accuracy of prediction (simulation data) or predictive ability (real dataset), bias and recovery of the true genomic heritability. The results indicated that the proposed Delta-p/G-BLUP index outperformed the other methods in both prediction accuracy and predictive ability.(AU)

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA