Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Virol J ; 15(1): 160, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326905

Resumo

BACKGROUND: Measles (MEV) and mumps virus (MUV) are enveloped, non-segmented, negative single stranded RNA viruses of the family Paramyxoviridae, and are the cause of measles and mumps, respectively, both preventable by vaccination. Aside from proteins coded by the viral genome, viruses are considered to contain host cell proteins (HCPs). The presence of extracellular vesicles (ECVs), which are often co-purified with viruses due to their similarity in size, density and composition, also contributes to HCPs detected in virus preparations, and this has often been neglected. The aim was to identify which virus-coded proteins are present in MEV and MUV virions, and to try to detect which HCPs, if any, are incorporated inside the virions or adsorbed on their outer surface, and which are more likely to be a contamination from co-purified ECVs. METHODS: MUV, MEV and ECVs were purified by ultracentrifugation, hydrophobic interaction chromatography and immunoaffinity chromatography, proteins in the samples were resolved by SDS-PAGE and subjected to identification by MALDI-TOF/TOF-MS. A comparative analysis of HCPs present in all samples was carried out. RESULTS: By proteomics approach, it was verified that almost all virus-coded proteins are present in MEV and MUV particles. Protein C in MEV which was until now considered to be non-structural viral protein, was found to be present inside the MeV virions. Results on the presence of HCPs in differently purified virus preparations imply that actin, annexins, cyclophilin A, moesin and integrin ß1 are part of the virions. CONCLUSIONS: All HCPs detected in the viruses are present in ECVs as well, indicating their possible function in vesicle formation, or that most of them are only present in ECVs. Only five HCPs were constantly present in purified virus preparations, regardless of the purification method used, implying they are likely the integral part of the virions. The approach described here is helpful for further investigation of HCPs in other virus preparations.


Assuntos
Vírus do Sarampo/química , Sarampo/virologia , Vírus da Caxumba/química , Caxumba/virologia , Proteoma/análise , Proteínas Virais/análise , Vírion/química , Animais , Chlorocebus aethiops , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Células Vero
2.
Arch Virol ; 161(6): 1455-67, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26935920

Resumo

Measles virus and mumps virus (MeV and MuV) are enveloped RNA viruses used for production of live attenuated vaccines for prophylaxis of measles and mumps disease, respectively. For biotechnological production of and basic research on these viruses, the preparation of highly purified and infectious viruses is a prerequisite, and to meet that aim, knowledge of their stability and biophysical properties is crucial. Our goal was to carry out a detailed investigation of the stability of MeV and MuV under various pH, temperature, shear stress, filtration and storage conditions, as well as to evaluate two commonly used purification techniques, ultracentrifugation and diafiltration, with regard to their efficiency and effect on virus properties. Virus titers were estimated by CCID50 assay, particle size and concentration were measured by Nanoparticle tracking analysis (NTA) measurements, and the host cell protein content was determined by ELISA. The results demonstrated the stability of MuV and MeV at pH <9 and above pH 4 and 5, respectively, and aggregation was observed at pH >9. Storage without stabilizer did not result in structural changes, but the reduction in infectivity after 24 hours was significant at +37 °C. Vortexing of the viruses resulted in significant particle degradation, leading to lower virus titers, whereas pipetting had much less impact on virus viability. Diafiltration resulted in higher recovery of both total and infectious virus particles than ultracentrifugation. These results provide important data for research on all upstream and downstream processes on these two viruses regarding biotechnological production and basic research.


Assuntos
Vírus do Sarampo/isolamento & purificação , Vírus da Caxumba/isolamento & purificação , Animais , Fenômenos Biofísicos , Chlorocebus aethiops , Filtração , Humanos , Concentração de Íons de Hidrogênio , Vacina contra Sarampo/isolamento & purificação , Vírus do Sarampo/química , Vacina contra Caxumba/isolamento & purificação , Vírus da Caxumba/química , Ultracentrifugação , Células Vero
3.
Artigo em Inglês | MEDLINE | ID: mdl-32760431

Resumo

BACKGROUND: Antivenoms are the only validated treatment against snakebite envenoming. Numerous drawbacks pertaining to their availability, safety and efficacy are becoming increasingly evident due to low sustainability of current productions. Technological innovation of procedures generating therapeutics of higher purity and better physicochemical characteristics at acceptable cost is necessary. The objective was to develop at laboratory scale a compact, feasible and economically viable platform for preparation of equine F(ab')2 antivenom against Vipera ammodytes ammodytes venom and to support it with efficiency data, to enable estimation of the process cost-effectiveness. METHODS: The principle of simultaneous caprylic acid precipitation and pepsin digestion has been implemented into plasma downstream processing. Balance between incomplete IgG breakdown, F(ab')2 over-digestion and loss of the active drug's protective efficacy was achieved by adjusting pepsin to a 1:30 substrate ratio (w/w) and setting pH at 3.2. Precipitation and digestion co-performance required 2 h-long incubation at 21 °C. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. In vivo neutralization potency of the F(ab')2 product against the venom's lethal toxicity was determined. RESULTS: Only three consecutive steps, performed under finely tuned conditions, were sufficient for preservation of the highest process recovery with the overall yield of 74%, comparing favorably to others. At the same time, regulatory requirements were met. Final product was aggregate- and pepsin-free. Its composition profile was analyzed by mass spectrometry as a quality control check. Impurities, present in minor traces, were identified mostly as IgG/IgM fragments, contributing to active drug. Specific activity of the F(ab')2 preparation with respect to the plasma was increased 3.9-fold. CONCLUSION: A highly streamlined mode for production of equine F(ab')2 antivenom was engineered. In addition to preservation of the highest process yield and fulfillment of the regulatory demands, performance simplicity and rapidity in the laboratory setting were demonstrated. Suitability for large-scale manufacturing appears promising.

4.
Toxins (Basel) ; 12(3)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188060

Resumo

The karst viper (Vipera ursinii ssp.) favours high-mountain dry grasslands in southern and south-eastern Croatia. It is medically less important than other Vipera species, because of its remote habitat and the very small amount of venom that it injects by its relatively short fangs. The scientific literature on Vipera ursinii deals mostly with the morphology, ecology and distribution range of this snake, due to the species' conservation issues, while the toxinological aspects of its venom have not so far been investigated. Here we report on the composition and biological activity of the Vipera ursinii ssp. venom. Using a proteomics approach, we have identified 25 proteins in the venom that belong to seven protein families: snake venom metalloproteinase, serine protease, secreted phospholipase A2, cysteine-rich secretory protein, snake C-type lectin-like protein, serine protease inhibitor and nerve growth factor. The Vipera ursinii ssp. venom was found to be distinctively insecticidal. Its lethal toxicity towards crickets was more than five times greater than that of Vipera ammodytes ammodytes venom, while the opposite held in mice. Interestingly, the mode of dying after injecting a mouse with Vipera ursinii ssp. venom may suggest the presence of a neurotoxic component. Neurotoxic effects of European vipers have so far been ascribed exclusively to ammodytoxins and ammodytoxin-like basic secreted phospholipases A2. Structural and immunological analyses of the Vipera ursinii ssp. venom, however, confirmed that ammodytoxin-like proteins are not present in this venom.


Assuntos
Espécies em Perigo de Extinção , Proteoma/análise , Venenos de Víboras , Viperidae , Animais , Croácia , Lectinas Tipo C/análise , Dose Letal Mediana , Metaloproteases/análise , Fosfolipases A2 Secretórias/análise , Proteômica , Venenos de Víboras/química , Venenos de Víboras/toxicidade
5.
J Pharm Biomed Anal ; 164: 276-282, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30408624

Resumo

The hyperimmune horse plasma (HHP), prepared through active immunisation of horses with an antigen of interest, is the most common starting material for antitoxin (animal antibody-based therapeutics) production. Precise IgG quantification in plasma is a prerequisite for accurate estimation of the purification process efficiency. Although immunoglobulins from HHP have been purified for over a century, there is still no in vitro method for precise and accurate determination of IgG content in HHP. For this reason, the purification process efficiency has been assessed by antibody activity measurements, mostly performed in vivo. Here we describe the development of a precise and accurate in vitro immunoassay for IgG quantification in HHP. We showed and highlighted that any difference in composition of IgG population between the standard and the sample, with respect to both IgG subclass distribution and antigen-specific IgG content, leads to inaccurate IgG quantification. We demonstrated that caprylic acid precipitation as the method for IgG isolation from horse plasma renders the composition of IgG population unchanged. This very efficient, fast, simple and inexpensive method was used to prepare internal, sample-specific reference IgG for each plasma sample, which was tested simultaneously to a respective plasma sample. Deviation of IgG quantity determined by ELISA for each sample-specific reference from its nominal value was used for correction of the results of respective plasma sample, which led to accurate and precise IgG quantification as shown by method validation. The here presented novel concept of sample-specific correction of immunoassay results could be widely applicable and easily introduced in different immunoassays for more accurate and precise plasma IgG quantification.


Assuntos
Soros Imunes/análise , Imunoglobulina G/sangue , Animais , Caprilatos/química , Precipitação Química , Cromatografia em Gel/instrumentação , Cromatografia em Gel/métodos , Ensaio de Imunoadsorção Enzimática/instrumentação , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/normas , Feminino , Cavalos , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Masculino , Camundongos , Testes de Neutralização/instrumentação , Padrões de Referência
6.
PLoS Negl Trop Dis ; 13(6): e0007431, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31206512

Resumo

Antivenoms from hyperimmune animal plasma are the only specific pharmaceuticals against snakebites. The improvement of downstream processing strategies is of great interest, not only in terms of purity profile, but also from yield-to-cost perspective and rational use of plasma of animal origin. We report on development of an efficient refinement strategy for F(ab')2-based antivenom preparation. Process design was driven by the imperative to keep the active principle constantly in solution as a precautionary measure to preserve stability of its conformation (precipitation of active principle or its adsorption to chromatographic stationary phase has been completely avoided). IgG was extracted from hyperimmune horse plasma by 2% (V/V) caprylic acid, depleted from traces of precipitating agent and digested by pepsin. Balance between incomplete IgG fraction breakdown, F(ab')2 over-digestion and loss of the active principle's protective efficacy was achieved by adjusting pepsin to substrate ratio at the value of 4:300 (w/w), setting pH to 3.2 and incubation period to 1.5 h. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. Developed manufacturing strategy gave 100% pure and aggregate-free F(ab')2 preparation, as shown by size-exclusion HPLC and confirmed by MS/MS. The overall yield of 75% or higher compares favorably to others so far reported. This optimised procedure looks also promising for large-scale production of therapeutic antivenoms, since high yield of the active drug and fulfillment of the regulatory demand considering purity was achieved. The recovery of the active substance was precisely determined in each purification step enabling accurate estimation of the process cost-effectiveness.


Assuntos
Antivenenos/imunologia , Antivenenos/isolamento & purificação , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Fatores Imunológicos/imunologia , Fatores Imunológicos/isolamento & purificação , Tecnologia Farmacêutica/métodos , Animais , Cavalos
7.
J Pharm Biomed Anal ; 161: 73-82, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30145452

Resumo

Protein thermal shift assay (TSA) has been extensively used in investigation of protein stabilization (for protein biopharmaceutics stabilization, protein crystallization studies or screening of recombinant proteins) and drug discovery (screening of ligands or inhibitors). This work aimed to analyze thermal shift assay results in comparison to protein polymerization (multimerization and aggregation) propensity and test the most stabilizing formulations for their stabilization effect on enveloped viruses. Influence of protein concentration, buffer pH and molarity was tested on three proteins (immunoglobulin G, ovalbumin, and albumin) and results showed that each of these factors has an impact on determined shift in protein melting point Tm, and the impact was similar for all three proteins. In case of ovalbumin, molecular dynamics simulations were performed with the goal to understanding molecular basis of protein's thermal stability dependence on pH. Effect of three denaturing agents in a wide concentration range on Tm showed nicely that chemical denaturation occurs only at the highest concentrations. Results showed similar effect on Tm for most formulations on different proteins. Most successful formulations were tested for enveloped virus stabilizing potential using cell culture infectivity assay (CCID50) and results showed lack of correlation with TSA results. Only weak correlation of Tm shift and protein polymerization measured by SEC-HPLC was obtained, meaning that polymerization cannot be predicted from Tm shifts.


Assuntos
Vírus do Sarampo/química , Vírus da Caxumba/química , Estabilidade Proteica , Proteínas do Envelope Viral/química , Albuminas/química , Células Cultivadas , Composição de Medicamentos , Estabilidade de Medicamentos , Guanidina/química , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Vírus do Sarampo/patogenicidade , Simulação de Dinâmica Molecular , Vírus da Caxumba/patogenicidade , Ovalbumina/química , Polimerização , Cianeto de Potássio/química , Desnaturação Proteica/efeitos dos fármacos , Temperatura de Transição , Ureia/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-28415019

Resumo

Viral particles are used in medical applications as vaccines or gene therapy vectors. In order to obtain product of high purity, potency and safety for medical use purification of virus particles is a prerequisite, and chromatography is gaining increased attention to meet this aim. Here, we report on the use of ion-exchange and hydrophobic interaction chromatography on monolithic columns for purification of mumps virus (MuV) and measles virus (MeV). Efficiency of the process was monitored by quantification of infective virus particles (by 50% cell culture infective dose assay) and total virus particles, and monitoring of their size (by Nanoparticle Tracking Analysis). Ion-exchange chromatography was shown to be inefficient for MuV and best results for MeV were obtained on QA column with recovery around 17%. Purification of MuV and MeV by hydrophobic interaction chromatography resulted in recoveries around 60%. Results showed that columns with small channels (d=1.4µm) are not suitable for MuV and MeV, although their size is below 400nm, whereas columns with large channels (6µm) showed to be efficient and recoveries independent on the flow rate up to 10mL/min. Heterogeneity of the virus suspension and its interday variability mostly regarding total-to-infective particle ratio was observed. Interestingly, a trend in recovery depending on the day of the harvest was also observed for both viruses, and it correlated with the total-to-infective particle ratio, indicating influence of the virus sample composition on the chromatography results.


Assuntos
Cromatografia por Troca Iônica/métodos , Vírus do Sarampo/isolamento & purificação , Vírus da Caxumba/isolamento & purificação , Sulfato de Amônio/química , Animais , Chlorocebus aethiops , Humanos , Interações Hidrofóbicas e Hidrofílicas , Sarampo/virologia , Caxumba/virologia , Células Vero
9.
J Chromatogr A ; 1447: 107-14, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27090389

Resumo

Immunoaffinity chromatography, based on the antigen-antibody recognition, enables specific purification of any antigen (protein, virus) by its antibody. The problem with immunoaffinity chromatography is the harsh elution conditions required for disrupting strong antigen-antibody interactions, such as low pH buffers, which are often deleterious for the immobilized protein and the protein to be isolated since they can also disrupt the intramolecular forces. Therefore, immunoaffinity chromatography can only be partially used for protein and virus purification. Here we report on a nonspecific elution in immunoaffinity chromatography using native conditions by elution with amino acid solution at physiological pH for which we suppose possible competing mechanism of action. Elution potential of various amino acid solutions was tested using immunoaffinity columns specific for ovalbumin and mumps virus, and protein G affinity column. Results have shown that the most successful elution solutions were those containing imidazole and arginine of high molarity. Imidazole represents aromatic residues readily found at the antigen-antibody interaction surface and arginine is most frequently found on protein surface in general. Therefore, results on their eluting power in immunoaffinity chromatography, which increases with increasing molarity, are in line with the competing mechanism of action. Virus immunoaffinity chromatography resulted in removal on nonviable virus particles, which is important for research and biotechnology purposes. In addition, amino acids are proven stabilizers for proteins and viruses making approach presented in this work a very convenient purification method.


Assuntos
Vírus da Caxumba/isolamento & purificação , Proteínas/isolamento & purificação , Aminoácidos/química , Animais , Anticorpos/química , Chlorocebus aethiops , Cromatografia de Afinidade/métodos , Concentração de Íons de Hidrogênio , Vírus da Caxumba/imunologia , Proteínas/imunologia , Células Vero
10.
J. venom. anim. toxins incl. trop. dis ; 26: e20200025, 2020. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135152

Resumo

Antivenoms are the only validated treatment against snakebite envenoming. Numerous drawbacks pertaining to their availability, safety and efficacy are becoming increasingly evident due to low sustainability of current productions. Technological innovation of procedures generating therapeutics of higher purity and better physicochemical characteristics at acceptable cost is necessary. The objective was to develop at laboratory scale a compact, feasible and economically viable platform for preparation of equine F(ab')2 antivenom against Vipera ammodytes ammodytes venom and to support it with efficiency data, to enable estimation of the process cost-effectiveness. Methods: The principle of simultaneous caprylic acid precipitation and pepsin digestion has been implemented into plasma downstream processing. Balance between incomplete IgG breakdown, F(ab')2 over-digestion and loss of the active drug's protective efficacy was achieved by adjusting pepsin to a 1:30 substrate ratio (w/w) and setting pH at 3.2. Precipitation and digestion co-performance required 2 h-long incubation at 21 °C. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. In vivo neutralization potency of the F(ab')2 product against the venom's lethal toxicity was determined. Results: Only three consecutive steps, performed under finely tuned conditions, were sufficient for preservation of the highest process recovery with the overall yield of 74%, comparing favorably to others. At the same time, regulatory requirements were met. Final product was aggregate- and pepsin-free. Its composition profile was analyzed by mass spectrometry as a quality control check. Impurities, present in minor traces, were identified mostly as IgG/IgM fragments, contributing to active drug. Specific activity of the F(ab')2 preparation with respect to the plasma was increased 3.9-fold. Conclusion: A highly streamlined mode for production of equine F(ab')2 antivenom was engineered. In addition to preservation of the highest process yield and fulfillment of the regulatory demands, performance simplicity and rapidity in the laboratory setting were demonstrated. Suitability for large-scale manufacturing appears promising.(AU)


Assuntos
Espectrometria de Massas , Antivenenos , Cromatografia , Corrente Jusante , Plasma , Imunoterapia
11.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200025, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32211

Resumo

Antivenoms are the only validated treatment against snakebite envenoming. Numerous drawbacks pertaining to their availability, safety and efficacy are becoming increasingly evident due to low sustainability of current productions. Technological innovation of procedures generating therapeutics of higher purity and better physicochemical characteristics at acceptable cost is necessary. The objective was to develop at laboratory scale a compact, feasible and economically viable platform for preparation of equine F(ab')2 antivenom against Vipera ammodytes ammodytes venom and to support it with efficiency data, to enable estimation of the process cost-effectiveness. Methods: The principle of simultaneous caprylic acid precipitation and pepsin digestion has been implemented into plasma downstream processing. Balance between incomplete IgG breakdown, F(ab')2 over-digestion and loss of the active drug's protective efficacy was achieved by adjusting pepsin to a 1:30 substrate ratio (w/w) and setting pH at 3.2. Precipitation and digestion co-performance required 2 h-long incubation at 21 °C. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. In vivo neutralization potency of the F(ab')2 product against the venom's lethal toxicity was determined. Results: Only three consecutive steps, performed under finely tuned conditions, were sufficient for preservation of the highest process recovery with the overall yield of 74%, comparing favorably to others. At the same time, regulatory requirements were met. Final product was aggregate- and pepsin-free. Its composition profile was analyzed by mass spectrometry as a quality control check. Impurities, present in minor traces, were identified mostly as IgG/IgM fragments, contributing to active drug. Specific activity of the F(ab')2 preparation with respect to the plasma was increased 3.9-fold. Conclusion: A highly streamlined mode for production of equine F(ab')2 antivenom was engineered. In addition to preservation of the highest process yield and fulfillment of the regulatory demands, performance simplicity and rapidity in the laboratory setting were demonstrated. Suitability for large-scale manufacturing appears promising.(AU)


Assuntos
Antivenenos , Corrente Jusante , Imunoterapia , Cromatografia por Troca Iônica , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA