Resumo
Bothrops atrox is known to be the pit viper responsible for most snakebites and human fatalities in the Amazon region. It can be found in a wide geographical area including northern South America, the east of Andes and the Amazon basin. Possibly, due to its wide distribution and generalist feeding, intraspecific venom variation was reported by previous proteomics studies. Sex-based and ontogenetic variations on venom compositions of Bothrops snakes were also subject of proteomic and peptidomic analysis. However, the venom peptidome of B. atrox remains unknown. Methods: We conducted a mass spectrometry-based analysis of the venom peptides of individual male and female specimens combining bottom-up and top-down approaches. Results: We identified in B. atrox a total of 105 native peptides in the mass range of 0.4 to 13.9 kDa. Quantitative analysis showed that phospholipase A2 and bradykinin potentiating peptides were the most abundant peptide families in both genders, whereas disintegrin levels were significantly increased in the venoms of females. Known peptides processed at non-canonical sites and new peptides as the Ba1a, which contains the SVMP BATXSVMPII1 catalytic site, were also revealed in this work. Conclusion: The venom peptidomes of male and female specimens of B. atrox were analyzed by mass spectrometry-based approaches in this work. The study points to differences in disintegrin levels in the venoms of females that may result in distinct pathophysiology of envenomation. Further research is required to explore the potential biological implications of this finding.(AU)
Assuntos
Animais , Peptídeos , Bothrops , Venenos de Crotalídeos/biossíntese , Caracteres Sexuais , Ecossistema Amazônico , PeptidomiméticosResumo
Bothrops atrox is known to be the pit viper responsible for most snakebites and human fatalities in the Amazon region. It can be found in a wide geographical area including northern South America, the east of Andes and the Amazon basin. Possibly, due to its wide distribution and generalist feeding, intraspecific venom variation was reported by previous proteomics studies. Sex-based and ontogenetic variations on venom compositions of Bothrops snakes were also subject of proteomic and peptidomic analysis. However, the venom peptidome of B. atrox remains unknown. Methods: We conducted a mass spectrometry-based analysis of the venom peptides of individual male and female specimens combining bottom-up and top-down approaches. Results: We identified in B. atrox a total of 105 native peptides in the mass range of 0.4 to 13.9 kDa. Quantitative analysis showed that phospholipase A2 and bradykinin potentiating peptides were the most abundant peptide families in both genders, whereas disintegrin levels were significantly increased in the venoms of females. Known peptides processed at non-canonical sites and new peptides as the Ba1a, which contains the SVMP BATXSVMPII1 catalytic site, were also revealed in this work. Conclusion: The venom peptidomes of male and female specimens of B. atrox were analyzed by mass spectrometry-based approaches in this work. The study points to differences in disintegrin levels in the venoms of females that may result in distinct pathophysiology of envenomation. Further research is required to explore the potential biological implications of this finding.(AU)
Assuntos
Animais , Venenos de Serpentes/análise , Venenos de Serpentes/química , Peptidomiméticos/análise , Peptidomiméticos/química , Caracteres Sexuais , Desintegrinas/análise , Desintegrinas/química , BothropsResumo
Abstract Background: Crotalus durissus is considered one of the most important species of venomous snakes in Brazil, due to the high mortality of its snakebites. The venom of Crotalus durissus contains four main toxins: crotoxin, convulxin, gyroxin and crotamine. Venoms can vary in their crotamine content, being crotamine-negative or -positive. This heterogeneity is of great importance for producing antivenom, due to their different mechanisms of action. The possibility that antivenom produced by Butantan Institute might have a different immunorecognition capacity between crotamine-negative and crotamine-positive C. durissus venoms instigated us to investigate the differences between these two venom groups. Methods: The presence of crotamine was analyzed by SDS-PAGE, western blotting and ELISA, whereas comparison between the two types of venoms was carried out through HPLC, mass spectrometry analysis as well as assessment of antivenom lethality and efficacy. Results: The results showed a variation in the presence of crotamine among the subspecies and the geographic origin of snakes from nature, but not in captive snakes. Regarding differences between crotamine-positive and -negative venoms, some exclusive proteins are found in each pool and the crotamine-negative pool presented more phospholipase A2 than crotamine-positive pool. This variation could affect the time to death, but the lethal and effective dose were not affected. Conclusion: These differences between venom pools indicate the importance of using both, crotamine-positive and crotamine-negative venoms, to produce the antivenom.(AU)
Assuntos
Animais , Antivenenos , Crotalus , Venenos de Crotalídeos/análise , Distribuição AnimalResumo
Background:Crotalus durissus is considered one of the most important species of venomous snakes in Brazil, due to the high mortality of its snakebites. The venom of Crotalus durissus contains four main toxins: crotoxin, convulxin, gyroxin and crotamine. Venoms can vary in their crotamine content, being crotamine-negative or -positive. This heterogeneity is of great importance for producing antivenom, due to their different mechanisms of action. The possibility that antivenom produced by Butantan Institute might have a different immunorecognition capacity between crotamine-negative and crotamine-positive C. durissus venoms instigated us to investigate the differences between these two venom groups. Methods:The presence of crotamine was analyzed by SDS-PAGE, western blotting and ELISA, whereas comparison between the two types of venoms was carried out through HPLC, mass spectrometry analysis as well as assessment of antivenom lethality and efficacy. Results:The results showed a variation in the presence of crotamine among the subspecies and the geographic origin of snakes from nature, but not in captive snakes. Regarding differences between crotamine-positive and -negative venoms, some exclusive proteins are found in each pool and the crotamine-negative pool presented more phospholipase A2 than crotamine-positive pool. This variation could affect the time to death, but the lethal and effective dose were not affected. Conclusion:These differences between venom pools indicate the importance of using both, crotamine-positive and crotamine-negative venoms, to produce the antivenom.(AU)