Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anim. Reprod. ; 15(1): 29-38, Jan.-Mar. 2018. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-16910

Resumo

Air phase is an indispensable environmental factor affecting oocyte maturation and early embryo development. Human exhaled air was previously proved to be a reliable and inexpensive atmosphere that sustains normal early development of mouse and bovine embryos. However, whether human exhaled air can support in vitro maturation (IVM) of porcine oocytes is not yet known. To evaluate the feasibility of maturing oocytes in human exhaled air, we examined oocyte morphology, BMP15 expression, nuclear and cytoplasmic maturation. We found that cumulus expansion status, expression levels of BMP15 important for cumulus expansion and the rate of first polar body emission were similar among human exhaled air, 5% O2 or 20% O2 in air after IVM of 44 h. Furthermore, the percentage of metaphase II (MII) oocytes showing normal cortical and sub-membranous localization of cortical granules and diffused mitochondrial distribution patterns is comparable among groups. The cleavage, blastocyst rate and total cell number were not apparently different for parthenogenetic activated and somatic cloned embryos derived from MII oocytes matured in three air phases, suggesting oocytes matured in human exhaled air obtain normal developmental competence. Taken together, human exhaled air can efficiently support in vitro maturation of porcine oocytes and subsequent early embryonic development.(AU)


Assuntos
Animais , Suínos/embriologia , Suínos/genética , Técnicas de Maturação in Vitro de Oócitos/métodos , Nível de Oxigênio/análise
2.
Anim. Reprod. (Online) ; 15(1): 29-38, Jan.-Mar. 2018. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1461334

Resumo

Air phase is an indispensable environmental factor affecting oocyte maturation and early embryo development. Human exhaled air was previously proved to be a reliable and inexpensive atmosphere that sustains normal early development of mouse and bovine embryos. However, whether human exhaled air can support in vitro maturation (IVM) of porcine oocytes is not yet known. To evaluate the feasibility of maturing oocytes in human exhaled air, we examined oocyte morphology, BMP15 expression, nuclear and cytoplasmic maturation. We found that cumulus expansion status, expression levels of BMP15 important for cumulus expansion and the rate of first polar body emission were similar among human exhaled air, 5% O2 or 20% O2 in air after IVM of 44 h. Furthermore, the percentage of metaphase II (MII) oocytes showing normal cortical and sub-membranous localization of cortical granules and diffused mitochondrial distribution patterns is comparable among groups. The cleavage, blastocyst rate and total cell number were not apparently different for parthenogenetic activated and somatic cloned embryos derived from MII oocytes matured in three air phases, suggesting oocytes matured in human exhaled air obtain normal developmental competence. Taken together, human exhaled air can efficiently support in vitro maturation of porcine oocytes and subsequent early embryonic development.


Assuntos
Animais , Nível de Oxigênio/análise , Suínos/embriologia , Suínos/genética , Técnicas de Maturação in Vitro de Oócitos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA