Resumo
Lachesis muta rhombeata is one of the venomous snakes of medical importance in Brazil whose envenoming is characterized by local and systemic effects which may produce even shock and death. Its venom is mainly comprised of serine and metalloproteinases, phospholipases A2 and bradykinin-potentiating peptides. Based on a previously reported fractionation of L. m. rhombeata venom (LmrV), we decided to perform a subproteome analysis of its major fraction and investigated a novel component present in this venom. Methods: LmrV was fractionated through molecular exclusion chromatography and the main fraction (S5) was submitted to fibrinogenolytic activity assay and fractionated by reversed-phase chromatography. The N-terminal sequences of the subfractions eluted from reversed-phase chromatography were determined by automated Edman degradation. Enzyme activity of LmrSP-4 was evaluated upon chromogenic substrates for thrombin (S-2238), plasma kallikrein (S-2302), plasmin and streptokinase-activated plasminogen (S-2251) and Factor Xa (S-2222) and upon fibrinogen. All assays were carried out in the presence or absence of possible inhibitors. The fluorescence resonance energy transfer substrate Abz-KLRSSKQ-EDDnp was used to determine the optimal conditions for LmrSP-4 activity. Molecular mass of LmrSP-4 was determined by MALDI-TOF and digested peptides after trypsin and Glu-C treatments were analyzed by high resolution MS/MS using different fragmentation modes. Results: Fraction S5 showed strong proteolytic activity upon fibrinogen. Its fractionation by reversed-phase chromatography gave rise to 6 main fractions (S5C1-S5C6). S5C1-S5C5 fractions correspond to serine proteinases whereas S5C6 represents a C-type lectin. S5C4 (named LmrSP-4) had its N-terminal determined by Edman degradation up to the 53rd amino acid residue and was chosen for characterization studies. LmrSP-4 is a fibrinogenolytic serine proteinase with high activity against S-2302, being inhibited by PMSF and benzamidine, but not by 1,10-phenantroline. In addition, this enzyme exhibited maximum activity within the pH range from neutral to basic and between 40 and 50 °C. About 68% of the LmrSP-4 primary structure was covered, and its molecular mass is 28,190 Da. Conclusions: Novel serine proteinase isoforms and a lectin were identified in LmrV. Additionally, a kallikrein-like serine proteinase that might be useful as molecular tool for investigating bradykinin-involving process was isolated and partially characterized.(AU)
Assuntos
Plasminogênio , Venenos de Serpentes , Lachesis muta , Serina Proteases , Calicreínas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fosfolipases A2Resumo
Background:Lachesis muta rhombeata is one of the venomous snakes of medical importance in Brazil whose envenoming is characterized by local and systemic effects which may produce even shock and death. Its venom is mainly comprised of serine and metalloproteinases, phospholipases A2 and bradykinin-potentiating peptides. Based on a previously reported fractionation of L. m. rhombeata venom (LmrV), we decided to perform a subproteome analysis of its major fraction and investigated a novel component present in this venom.Methods:LmrV was fractionated through molecular exclusion chromatography and the main fraction (S5) was submitted to fibrinogenolytic activity assay and fractionated by reversed-phase chromatography. The N-terminal sequences of the subfractions eluted from reversed-phase chromatography were determined by automated Edman degradation. Enzyme activity of LmrSP-4 was evaluated upon chromogenic substrates for thrombin (S-2238), plasma kallikrein (S-2302), plasmin and streptokinase-activated plasminogen (S-2251) and Factor Xa (S-2222) and upon fibrinogen. All assays were carried out in the presence or absence of possible inhibitors. The fluorescence resonance energy transfer substrate Abz-KLRSSKQ-EDDnp was used to determine the optimal conditions for LmrSP-4 activity. Molecular mass of LmrSP-4 was determined by MALDI-TOF and digested peptides after trypsin and Glu-C treatments were analyzed by high resolution MS/MS using different fragmentation modes.Results:Fraction S5 showed strong proteolytic activity upon fibrinogen. Its fractionation by reversed-phase chromatography gave rise to 6 main fractions (S5C1-S5C6). S5C1-S5C5 fractions correspond to serine proteinases whereas S5C6 represents a C-type lectin. S5C4 (named LmrSP-4) had its N-terminal determined by Edman degradation up to the 53rd amino acid residue and was chosen for characterization studies. LmrSP-4 is a fibrinogenolytic...(AU)
Resumo
Hyaluronidases are enzymes that mainly degrade hyaluronan, the major glycosaminoglycan of the interstitial matrix. They are involved in several pathological and physiological activities including fertilization, wound healing, embryogenesis, angiogenesis, diffusion of toxins and drugs, metastasis, pneumonia, sepsis, bacteremia, meningitis, inflammation and allergy, among others. Hyaluronidases are widely distributed in nature and the enzymes from mammalian spermatozoa, lysosomes and animal venoms belong to the subclass EC 3.2.1.35. To date, only five three-dimensional structures for arthropod venom hyaluronidases (Apis mellifera and Vespula vulgaris) were determined. Additionally, there are four molecular models for hyaluronidases fromMesobuthus martensii, Polybia paulista and Tityus serrulatus venoms. These enzymes are employed as adjuvants to increase the absorption and dispersion of other drugs and have been used in various off-label clinical conditions to reduce tissue edema. Moreover, a PEGylated form of a recombinant human hyaluronidase is currently under clinical trials for the treatment of metastatic pancreatic cancer. This review focuses on the arthropod venom hyaluronidases and provides an overview of their biochemical properties, role in the envenoming, structure/activity relationship, and potential medical and biotechnological applications.(AU)
Assuntos
Animais , Venenos de Artrópodes , Cicatrização , Biotecnologia , Preparações Farmacêuticas , Ácido HialurônicoResumo
Background Crotalus durissus terrificus venom (CdtV) is one of the most studied snake venoms in Brazil. Despite presenting several well known proteins, its L-amino acid oxidase (LAAO) has not been studied previously. This study aimed to isolate, characterize and evaluate the enzyme stability of bordonein-L, an LAAO from CdtV.Methods The enzyme was isolated through cation exchange, gel filtration and affinity chromatography, followed by a reversed-phase fast protein liquid chromatography to confirm its purity. Subsequently, its N-terminal amino acid sequence was determined by Edman degradation. The enzyme activity and stability were evaluated by a microplate colorimetric assay and the molecular mass was estimated by SDS-PAGE using periodic acid-Schiff staining and determined by mass spectrometry.Results The first 39 N-terminal amino acid residues exhibited high identity with other snake venom L-amino acid oxidases. Bordonein-L is a homodimer glycoprotein of approximately 101 kDa evaluated by gel filtration. Its monomer presents around 53 kDa estimated by SDS-PAGE and 58,702 Da determined by MALDI-TOF mass spectrometry. The enzyme exhibited maximum activity at pH 7.0 and lost about 50 % of its activity after five days of storage at 4 °C. Bordonein-L's activity was higher than the control when stored in 2.8 % mannitol or 8.5 % sucrose.Conclusions This research is pioneering in its isolation, characterization and enzyme stability evaluation of an LAAO from CdtV, denominated bordonein-L. These results are important because they increase the knowledge about stabilization of LAAOs, aiming to increase their shelf life. Since the maintenance of enzymatic activity after long periods of storage is essential to enable their biotechnological use as well as their functional studies.(AU)
Assuntos
Animais , Oxirredutases , Venenos de Serpentes , Estabilidade Enzimática , L-Aminoácido Oxidase , AminoácidosResumo
Background Crotalus durissus terrificus venom (CdtV) is one of the most studied snake venoms in Brazil. Despite presenting several well known proteins, its L-amino acid oxidase (LAAO) has not been studied previously. This study aimed to isolate, characterize and evaluate the enzyme stability of bordonein-L, an LAAO from CdtV.Methods The enzyme was isolated through cation exchange, gel filtration and affinity chromatography, followed by a reversed-phase fast protein liquid chromatography to confirm its purity. Subsequently, its N-terminal amino acid sequence was determined by Edman degradation. The enzyme activity and stability were evaluated by a microplate colorimetric assay and the molecular mass was estimated by SDS-PAGE using periodic acid-Schiff staining and determined by mass spectrometry.Results The first 39 N-terminal amino acid residues exhibited high identity with other snake venom L-amino acid oxidases. Bordonein-L is a homodimer glycoprotein of approximately 101 kDa evaluated by gel filtration. Its monomer presents around 53 kDa estimated by SDS-PAGE and 58,702 Da determined by MALDI-TOF mass spectrometry. The enzyme exhibited maximum activity at pH 7.0 and lost about 50 % of its activity after five days of storage at 4 °C. Bordonein-Ls activity was higher than the control when stored in 2.8 % mannitol or 8.5 % sucrose.Conclusions This research is pioneering in its isolation, characterization and enzyme stability evaluation of an LAAO from CdtV, denominated bordonein-L. These results are important because they increase the knowledge about stabilization of LAAOs, aiming to increase their shelf life. Since the maintenance of enzymatic activity after long periods of storage is essential to enable their biotechnological use as well as their functional studies.(AU)
Assuntos
Animais , Animais Peçonhentos , Crotalus cascavella , Venenos de Serpentes , L-Aminoácido Oxidase/isolamento & purificação , Estabilidade EnzimáticaResumo
Hyaluronidases are enzymes that mainly degrade hyaluronan, the major glycosaminoglycan of the interstitial matrix. They are involved in several pathological and physiological activities including fertilization, wound healing, embryogenesis, angiogenesis, diffusion of toxins and drugs, metastasis, pneumonia, sepsis, bacteremia, meningitis, inflammation and allergy, among others. Hyaluronidases are widely distributed in nature and the enzymes from mammalian spermatozoa, lysosomes and animal venoms belong to the subclass EC 3.2.1.35. To date, only five three-dimensional structures for arthropod venom hyaluronidases (Apis mellifera and Vespula vulgaris) were determined. Additionally, there are four molecular models for hyaluronidases fromMesobuthus martensii, Polybia paulista and Tityus serrulatus venoms. These enzymes are employed as adjuvants to increase the absorption and dispersion of other drugs and have been used in various off-label clinical conditions to reduce tissue edema. Moreover, a PEGylated form of a recombinant human hyaluronidase is currently under clinical trials for the treatment of metastatic pancreatic cancer. This review focuses on the arthropod venom hyaluronidases and provides an overview of their biochemical properties, role in the envenoming, structure/activity relationship, and potential medical and biotechnological applications.(AU)
Assuntos
Animais , Venenos de Artrópodes/análise , Venenos de Artrópodes/uso terapêutico , Animais Peçonhentos , HialuronoglucosaminidaseResumo
Hyaluronidases are enzymes that mainly degrade hyaluronan, the major glycosaminoglycan of the interstitial matrix. They are involved in several pathological and physiological activities including fertilization, wound healing, embryogenesis, angiogenesis, diffusion of toxins and drugs, metastasis, pneumonia, sepsis, bacteremia, meningitis, inflammation and allergy, among others. Hyaluronidases are widely distributed in nature and the enzymes from mammalian spermatozoa, lysosomes and animal venoms belong to the subclass EC 3.2.1.35. To date, only five three-dimensional structures for arthropod venom hyaluronidases (Apis mellifera and Vespula vulgaris) were determined. Additionally, there are four molecular models for hyaluronidases fromMesobuthus martensii, Polybia paulista and Tityus serrulatus venoms. These enzymes are employed as adjuvants to increase the absorption and dispersion of other drugs and have been used in various off-label clinical conditions to reduce tissue edema. Moreover, a PEGylated form of a recombinant human hyaluronidase is currently under clinical trials for the treatment of metastatic pancreatic cancer. This review focuses on the arthropod venom hyaluronidases and provides an overview of their biochemical properties, role in the envenoming, structure/activity relationship, and potential medical and biotechnological applications.
Assuntos
Animais , Animais Peçonhentos , Hialuronoglucosaminidase , Venenos de Artrópodes/análise , Venenos de Artrópodes/uso terapêuticoResumo
Background Crotalus durissus terrificus venom (CdtV) is one of the most studied snake venoms in Brazil. Despite presenting several well known proteins, its L-amino acid oxidase (LAAO) has not been studied previously. This study aimed to isolate, characterize and evaluate the enzyme stability of bordonein-L, an LAAO from CdtV.Methods The enzyme was isolated through cation exchange, gel filtration and affinity chromatography, followed by a reversed-phase fast protein liquid chromatography to confirm its purity. Subsequently, its N-terminal amino acid sequence was determined by Edman degradation. The enzyme activity and stability were evaluated by a microplate colorimetric assay and the molecular mass was estimated by SDS-PAGE using periodic acid-Schiff staining and determined by mass spectrometry.Results The first 39 N-terminal amino acid residues exhibited high identity with other snake venom L-amino acid oxidases. Bordonein-L is a homodimer glycoprotein of approximately 101 kDa evaluated by gel filtration. Its monomer presents around 53 kDa estimated by SDS-PAGE and 58,702 Da determined by MALDI-TOF mass spectrometry. The enzyme exhibited maximum activity at pH 7.0 and lost about 50 % of its activity after five days of storage at 4 °C. Bordonein-Ls activity was higher than the control when stored in 2.8 % mannitol or 8.5 % sucrose.Conclusions This research is pioneering in its isolation, characterization and enzyme stability evaluation of an LAAO from CdtV, denominated bordonein-L. These results are important because they increase the knowledge about stabilization of LAAOs, aiming to increase their shelf life. Since the maintenance of enzymatic activity after long periods of storage is essential to enable their biotechnological use as well as their functional studies.