Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ci. Rural ; 41(5)2011.
Artigo em Português | VETINDEX | ID: vti-707250

Resumo

One of the main subjects studied by population genetics is the Hardy-Weinberg equilibrium. In this context, this paper addresses the analysis and comparison of bayesian models used in its evaluation by the coefficient of disequilibrium. For this, it was carried out a simulation study in which the following prior distributions were considered: Dirichlet (model 1), beta - uniform step function (model 2), uniform - uniform step function (model 3) and independent uniform priors (model 4). Examples of application to real data for racial groups are presented and discussed. Samples from the marginal posterior distributions for parameters of interest were obtained by Metropolis-Hastings algorithm, which was implemented in the software R. The convergence of the chains generated by this algorithm was monitored by criteria of Geweke and Gelman & Rubin, which are implemented in the BOA package R. Regarding comparisons between models, performed using the Bayes factor, it was observed that model 4 is the most suitable for the cases of D A=0.146, D A=0.02 and D A=-0.02 with n=200, the model 2 is the most suitable for D A=-0.02 with n=50 and the model 3 is the most suitable for D A=-0.02 and n=1000. For real data, in each case examined, there is a large difference in choice of models, where model 1 is the only one not recommended.


O equilíbrio de Hardy-Weinberg é um dos principais assuntos estudados pela Genética de populações. Neste contexto, o presente trabalho aborda a análise e a comparação bayesiana de modelos utilizando o coeficiente de desequilíbrio (D A). Para isso, realizou-se um estudo de simulação no qual as seguintes distribuições a priori foram consideradas: Dirichlet (modelo 1); beta - função degrau uniforme (modelo 2); uniforme - função degrau uniforme (modelo 3); e as prioris independentes uniformes (modelo 4). Exemplos de aplicação a dados reais de grupos raciais também são apresentados e discutidos. As amostras das distribuições marginais a posteriori para os parâmetros de interesse foram obtidas mediante o algoritmo Metropolis-Hastings, o qual foi implementado no software livre R. A convergência das cadeias geradas por este algoritmo foi monitorada pelos critérios de Geweke e Gelman & Rubin, os quais estão implementados no pacote BOA do R. Quanto às comparações entre os modelos, efetuadas por meio do fator de Bayes, observa-se que, para os dados simulados, o modelo 4 é o mais indicado para os casos de D A=0,146, D A=0,02 e D A=-0,02 com n=200; o modelo 2 é o mais indicado para D A=-0,02 e n=50 e o modelo 3 é o mais indicado para D A=-0,02 e n=1000. Para os dados reais, em cada caso analisado, nota-se uma grande diferenciação na escolha de modelos, em que apenas o modelo 1 não é recomendado.

2.
Artigo em Português | LILACS-Express | VETINDEX | ID: biblio-1478591

Resumo

One of the main subjects studied by population genetics is the Hardy-Weinberg equilibrium. In this context, this paper addresses the analysis and comparison of bayesian models used in its evaluation by the coefficient of disequilibrium. For this, it was carried out a simulation study in which the following prior distributions were considered: Dirichlet (model 1), beta - uniform step function (model 2), uniform - uniform step function (model 3) and independent uniform priors (model 4). Examples of application to real data for racial groups are presented and discussed. Samples from the marginal posterior distributions for parameters of interest were obtained by Metropolis-Hastings algorithm, which was implemented in the software R. The convergence of the chains generated by this algorithm was monitored by criteria of Geweke and Gelman & Rubin, which are implemented in the BOA package R. Regarding comparisons between models, performed using the Bayes factor, it was observed that model 4 is the most suitable for the cases of D A=0.146, D A=0.02 and D A=-0.02 with n=200, the model 2 is the most suitable for D A=-0.02 with n=50 and the model 3 is the most suitable for D A=-0.02 and n=1000. For real data, in each case examined, there is a large difference in choice of models, where model 1 is the only one not recommended.


O equilíbrio de Hardy-Weinberg é um dos principais assuntos estudados pela Genética de populações. Neste contexto, o presente trabalho aborda a análise e a comparação bayesiana de modelos utilizando o coeficiente de desequilíbrio (D A). Para isso, realizou-se um estudo de simulação no qual as seguintes distribuições a priori foram consideradas: Dirichlet (modelo 1); beta - função degrau uniforme (modelo 2); uniforme - função degrau uniforme (modelo 3); e as prioris independentes uniformes (modelo 4). Exemplos de aplicação a dados reais de grupos raciais também são apresentados e discutidos. As amostras das distribuições marginais a posteriori para os parâmetros de interesse foram obtidas mediante o algoritmo Metropolis-Hastings, o qual foi implementado no software livre R. A convergência das cadeias geradas por este algoritmo foi monitorada pelos critérios de Geweke e Gelman & Rubin, os quais estão implementados no pacote BOA do R. Quanto às comparações entre os modelos, efetuadas por meio do fator de Bayes, observa-se que, para os dados simulados, o modelo 4 é o mais indicado para os casos de D A=0,146, D A=0,02 e D A=-0,02 com n=200; o modelo 2 é o mais indicado para D A=-0,02 e n=50 e o modelo 3 é o mais indicado para D A=-0,02 e n=1000. Para os dados reais, em cada caso analisado, nota-se uma grande diferenciação na escolha de modelos, em que apenas o modelo 1 não é recomendado.

3.
Ci. Rural ; 39(6)2009.
Artigo em Português | VETINDEX | ID: vti-706011

Resumo

The aim of this research is to perform a Bayesian characterization of the Hardy-Weinberg disequilibrium through the Bayes factor. The methodology is tested by using both simulation study and actual data. It was used the following priors for the Bayesian models: Dirichlet (model 1), beta - step uniform function (model 2), uniform - step uniform function (model 3) and independent uniforms for the inbreeding coefficients and allele frequencies (model 4). Metropolis-Hasting algorithms were implemented using the software R to simulate multiple draws from the posterior distribution. Convergence of the Metropolis-Hasting algorithms was assessed by many methods available at R package BOA. Results showed that the model 1 presents the best performance for both simulation study and actual data. The results also showed that the Bayesian approach provides models that are useful for the analysis of the Hardy-Weinberg disequilibrium and inbreeding coefficient.


Este trabalho tem como objetivo realizar uma análise bayesiana de modelos, por meio do fator de Bayes, para o desequilíbrio de Hardy-Weinberg. Pretende-se também testar a metodologia por meio da simulação de dados e aplicá-la a um conjunto de dados reais. Na definição dos modelos, utilizaram-se as prioris Dirichlet (modelo 1), Beta - função degrau Uniforme (modelo 2), Uniforme - função degrau Uniforme (modelo 3) e as prioris independentes Uniformes (modelo 4) relacionadas aos parâmetros coeficiente de endogamia e proporção alélica. Foi implementado um algoritmo no software livre R para realizar a amostragem pelo Metropolis-Hastings das distribuições condicionais a posteriori dos parâmetros dos modelos. A convergência das cadeias foram monitoradas por meio de procedimentos implementados no pacote BOA do software livre R. As comparações entre os modelos indicaram que o mais adequado, ou seja, o que melhor descreve o fenômeno em estudo, é o modelo 1, em comparação aos demais, tanto para os dados simulados, quanto para os dados reais. Em virtude dos resultados apresentados, pode-se atestar que a abordagem Bayesiana apresentou bons resultados, ou seja, por meio das distribuições a posteriori condicionais completas, foram verificadas a confiabilidade e a precisão da metodologia na comparação dos modelos.

4.
Artigo em Português | LILACS-Express | VETINDEX | ID: biblio-1477683

Resumo

The aim of this research is to perform a Bayesian characterization of the Hardy-Weinberg disequilibrium through the Bayes factor. The methodology is tested by using both simulation study and actual data. It was used the following priors for the Bayesian models: Dirichlet (model 1), beta - step uniform function (model 2), uniform - step uniform function (model 3) and independent uniforms for the inbreeding coefficients and allele frequencies (model 4). Metropolis-Hasting algorithms were implemented using the software R to simulate multiple draws from the posterior distribution. Convergence of the Metropolis-Hasting algorithms was assessed by many methods available at R package BOA. Results showed that the model 1 presents the best performance for both simulation study and actual data. The results also showed that the Bayesian approach provides models that are useful for the analysis of the Hardy-Weinberg disequilibrium and inbreeding coefficient.


Este trabalho tem como objetivo realizar uma análise bayesiana de modelos, por meio do fator de Bayes, para o desequilíbrio de Hardy-Weinberg. Pretende-se também testar a metodologia por meio da simulação de dados e aplicá-la a um conjunto de dados reais. Na definição dos modelos, utilizaram-se as prioris Dirichlet (modelo 1), Beta - função degrau Uniforme (modelo 2), Uniforme - função degrau Uniforme (modelo 3) e as prioris independentes Uniformes (modelo 4) relacionadas aos parâmetros coeficiente de endogamia e proporção alélica. Foi implementado um algoritmo no software livre R para realizar a amostragem pelo Metropolis-Hastings das distribuições condicionais a posteriori dos parâmetros dos modelos. A convergência das cadeias foram monitoradas por meio de procedimentos implementados no pacote BOA do software livre R. As comparações entre os modelos indicaram que o mais adequado, ou seja, o que melhor descreve o fenômeno em estudo, é o modelo 1, em comparação aos demais, tanto para os dados simulados, quanto para os dados reais. Em virtude dos resultados apresentados, pode-se atestar que a abordagem Bayesiana apresentou bons resultados, ou seja, por meio das distribuições a posteriori condicionais completas, foram verificadas a confiabilidade e a precisão da metodologia na comparação dos modelos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA