Resumo
Background: Lachesis muta rhombeata (Lmr) is the largest venomous snake in Latin America and its venom contains mainly enzymatic components, such as serine and metalloproteases, L-amino acid oxidase and phospholipases A2. Metalloproteases comprise a large group of zinc-dependent proteases that cleave basement membrane components such as fibronectin, laminin and collagen type IV. These enzymes are responsible for local and systemic changes, including haemorrhage, myonecrosis and inflammation. This study aimed the isolation and enzymatic characterization of the first metalloprotease (Lmr-MP) from Lmr venom (LmrV). Methods and results: Lmr-MP was purified through two chromatographic steps and submitted to enzymatic characterization. It showed proteolytic activity on azocasein with maximum activity at pH 7.0-9.0. It was inhibited by EDTA (a metal chelator that removes zinc, which is essential for enzymatic activity) and no effect was observed with PMSF, iodoacetic acid or pepstatin (inhibitors of serine, cysteine and aspartyl proteases, respectively). Ca2+, Mg2+ and Ba2+ ions increased its activity, while Al3+, Cu2+, Ni2+ and Zn2+ inhibited it. Additionally, ZnCl2 showed a dose dependent inhibition of the enzyme. Lmr-MP activity was also evaluated upon chromogenic substrates for plasma kallikrein (S-2302), plasmin and streptokinase-activated plasminogen (S-2251) and Factor Xa (S-2222) showing the highest activity on S-2302. The activity in different solutions (5 mM or 50 mM ammonium bicarbonate, pH 7.8; 0.1% trifluoroacetic acid + 50% acetonitrile; phosphate buffer saline, pH 7.4; 50 mM sodium acetate, pH 4.0 or ammonium acetate pH 4.5) was also evaluated and the results showed that its activity was abolished at acidic pHs. Its molecular mass (22,858 Da) was determined by MALDI-TOF and about 90% of its primary structure was verified by high-resolution mass spectrometry... (AU)
Assuntos
Animais , Viperidae , Venenos de Víboras/análise , Venenos de Víboras/química , Enzimas , Metaloproteases/químicaResumo
Lachesis muta rhombeata (Lmr) is the largest venomous snake in Latin America and its venom contains mainly enzymatic components, such as serine and metalloproteases, L-amino acid oxidase and phospholipases A2. Metalloproteases comprise a large group of zinc-dependent proteases that cleave basement membrane components such as fibronectin, laminin and collagen type IV. These enzymes are responsible for local and systemic changes, including haemorrhage, myonecrosis and inflammation. This study aimed the isolation and enzymatic characterization of the first metalloprotease (Lmr-MP) from Lmr venom (LmrV). Methods and results: Lmr-MP was purified through two chromatographic steps and submitted to enzymatic characterization. It showed proteolytic activity on azocasein with maximum activity at pH 7.0-9.0. It was inhibited by EDTA (a metal chelator that removes zinc, which is essential for enzymatic activity) and no effect was observed with PMSF, iodoacetic acid or pepstatin (inhibitors of serine, cysteine and aspartyl proteases, respectively). Ca2+, Mg2+ and Ba2+ ions increased its activity, while Al3+, Cu2+, Ni2+ and Zn2+ inhibited it. Additionally, ZnCl2 showed a dose dependent inhibition of the enzyme. Lmr-MP activity was also evaluated upon chromogenic substrates for plasma kallikrein (S-2302), plasmin and streptokinase-activated plasminogen (S-2251) and Factor Xa (S-2222) showing the highest activity on S-2302. The activity in different solutions (5 mM or 50 mM ammonium bicarbonate, pH 7.8; 0.1% trifluoroacetic acid + 50% acetonitrile; phosphate buffer saline, pH 7.4; 50 mM sodium acetate, pH 4.0 or ammonium acetate pH 4.5) was also evaluated and the results showed that its activity was abolished at acidic pHs. Its molecular mass (22,858 Da) was determined by MALDI-TOF and about 90% of its primary structure was verified by high-resolution mass spectrometry using HCD and ETD fragmentations and database search against the sequence of closely related species. It is a novel enzyme which shared high identity with other snake venom metalloproteases (svMPs) belonging to the P-I group. Conclusion: The purification procedure achieved a novel pure highly active metalloprotease from LmrV. This new molecule can help to understand the metalloproteases mechanisms of action, the Lachesis envenoming, as well as to open new perspectives for its use as therapeutic tools.(AU)
Assuntos
Animais , Peptídeo Hidrolases , Venenos de Serpentes , Lachesis muta , Metaloproteases , Ácido Aspártico ProteasesResumo
Background In the Atlantic forest of the North and Northeast regions of Brazil, local population often uses the fruit juice and the aqueous extract of leaves of soursop (Annona muricata L.) to treat Lachesis muta rhombeata envenomation. Envenomation is a relevant health issue in these areas, especially due to its severity and because the production and distribution of antivenom is limited in these regions. The aim of the present study was to evaluate the relevance of the use of soursop leaf extract and its juice against envenomation by Lachesis muta rhombeata. Methods We evaluated the biochemical, hematological and hemostatic parameters, the blood pressure, the inflammation process and the lethality induced by Lachesis muta rhombeata snake venom. We also assessed the action of the aqueous extract of leaves (AmL) and juice (AmJ) from A. muricata on the animal organism injected with L. m. rhombeata venom (LmrV) in the laboratory environment. Results LmrV induced a decrease of total protein, albumin and glucose; and increase of creatine kinase, aspartate aminotransferase, and urea concentrations. It provoked hemoconcentration followed by reduction of hematocrit, an increase in prothrombin time and partial thromboplastin time and a decrease of the blood pressure. LmrV induced the release of interleukin-6, an increase in neutrophils and changes in the serum protein profile, characteristic of the acute inflammatory process. LD50 values were similar for the groups injected with LmrV and treated or untreated with AmJ and AmL. Both treatments play a role on the maintenance of blood glucose, urea and coagulation parameters and exert a protective action against the myotoxicity. However, they seem to worsen the hypotension caused by LmrV. Conclusion The treatments with AmJ and AmL present some beneficial actions, but they might intensify some effects of the venom. Therefore, additional studies on A. muricata are necessary to enable its use as natural antivenom for bushmaster snakebite.(AU)
Assuntos
Mordeduras de Serpentes , Venenos de Serpentes , Antivenenos , Lachesis muta , Viperidae , Creatina Quinase , Annona , MiotoxicidadeResumo
The snake genus Lachesis provokes 2 to 3% of snakebites in Colombia every year. Two Lachesis species, L. acrochorda and L. muta, share habitats with snakes from another genus, namely Bothrops asper and B. atrox. Lachesis venom causes systemic and local effects such as swelling, hemorrhaging, myonecrosis, hemostatic disorders and nephrotoxic symptoms similar to those induced by Bothrops, Portidium and Bothriechis bites. Bothrops antivenoms neutralize a variety of Lachesis venom toxins. However, these products are unable to avoid coagulation problems provoked by Lachesis snakebites. Thus, it is important to ascertain whether the envenomation was caused by a Bothrops or Lachesis snake. The present study found enzyme linked immunosorbent assay (ELISA) efficient for detecting Lachesis acrochorda venom in a concentration range of 3.9 to 1000 ng/mL, which did not show a cross-reaction with Bothrops, Portidium, Botriechis and Crotalus venoms. Furthermore, one fraction of L. acrochorda venom that did not show crossreactivity with B. asper venom was isolated using the same ELISA antibodies; some of its proteins were identified including one Gal-specific lectin and one metalloproteinase. This test may be useful to physicians, since it could be applicable for tracking the kinetic distribution of antigens in patients or experimentally envenomed animals.(AU)
Assuntos
Venenos de Serpentes/toxicidade , Ensaio de Imunoadsorção Enzimática/métodos , Técnicas Imunoenzimáticas/métodos , ViperidaeResumo
The snake genus Lachesis provokes 2 to 3% of snakebites in Colombia every year. Two Lachesis species, L. acrochorda and L. muta, share habitats with snakes from another genus, namely Bothrops asper and B. atrox. Lachesis venom causes systemic and local effects such as swelling, hemorrhaging, myonecrosis, hemostatic disorders and nephrotoxic symptoms similar to those induced by Bothrops, Portidium and Bothriechis bites. Bothrops antivenoms neutralize a variety of Lachesis venom toxins. However, these products are unable to avoid coagulation problems provoked by Lachesis snakebites. Thus, it is important to ascertain whether the envenomation was caused by a Bothrops or Lachesis snake. The present study found enzyme linked immunosorbent assay (ELISA) efficient for detecting Lachesis acrochorda venom in a concentration range of 3.9 to 1000 ng/mL, which did not show a cross-reaction with Bothrops, Portidium, Botriechis and Crotalus venoms. Furthermore, one fraction of L. acrochorda venom that did not show crossreactivity with B. asper venom was isolated using the same ELISA antibodies; some of its proteins were identified including one Gal-specific lectin and one metalloproteinase. This test may be useful to physicians, since it could be applicable for tracking the kinetic distribution of antigens in patients or experimentally envenomed animals.(AU)
Assuntos
Animais , Venenos de Víboras/enzimologia , /métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Reações CruzadasResumo
Snakebites comprise a serious health problem in several countries due to their global incidence, which exceeds 2.5 million per year, and the elevated number of victim fatalities. To counteract envenomations, antivenoms have been used regularly for more than a century. Apart from side effects including anaphylactic reactions, antivenoms are not able to efficiently neutralize local tissue damage, which contributes to increasing the severity and morbidity observed in patients. This fact, in turn, may be responsible for economic hardship, particularly in rural populations of developing countries. In the present work, we evaluated the antiophidian properties of 12 Brazilian plant extracts against the hemolytic, coagulant, hemorrhagic and proteolytic effects of Lachesis muta venom. Taken together, our data revealed that most of these aqueous products were capable of inhibiting those activities at different levels, except for Sapindus saponaria extract. In contrast, Stryphnodendron barbatiman extract completely neutralized all the analyzed biological activities. Thus, we may conclude that Brazilian flora may also be useful against L. muta accidents.(AU)