Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Intervalo de ano de publicação
1.
Sci. agric ; 73(2): 142-149, Mar.-Apr. 2016. tab
Artigo em Inglês | VETINDEX | ID: biblio-1497551

Resumo

Genomic selection (GS) has recently been proposed as a new selection strategy which represents an innovative paradigm in crop improvement, now widely adopted in animal breeding. Genomic selection relies on phenotyping and high-density genotyping of a sufficiently large and representative sample of the target breeding population, so that the majority of loci that regulate a quantitative trait are in linkage disequilibrium with one or more molecular markers and can thus be captured by selection. In this study we address genomic selection in a practical fruit breeding context applying it to a breeding population of table grape obtained from a cross between the hybrid genotype D8909-15 (Vitis rupestris × Vitis arizonica/girdiana), which is resistant to dagger nematode and Pierces disease (PD), and B90-116, a susceptible Vitis vinifera cultivar with desirable fruit characteristics. Our aim was to enhance the knowledge on the genomic variation of agronomical traits in table grape populations for future use in marker-assisted selection (MAS) and GS, by discovering a set of molecular markers associated with genomic regions involved in this variation. A number of Quantitative Trait Loci (QTL) were discovered but this method is inaccurate and the genetic architecture of the studied population was better captured by the BLasso method of genomic selection, which allowed for efficient inference about the genetic contribution of the various marker loci. The technology of genomic selection afforded greater efficiency than QTL analysis and can be very useful in speeding up the selection procedures for agronomic traits in table grapes.


Assuntos
Melhoramento Vegetal , Seleção Genética , Vitis/genética
2.
Sci. agric. ; 73(2): 142-149, Mar.-Apr. 2016. tab
Artigo em Inglês | VETINDEX | ID: vti-30585

Resumo

Genomic selection (GS) has recently been proposed as a new selection strategy which represents an innovative paradigm in crop improvement, now widely adopted in animal breeding. Genomic selection relies on phenotyping and high-density genotyping of a sufficiently large and representative sample of the target breeding population, so that the majority of loci that regulate a quantitative trait are in linkage disequilibrium with one or more molecular markers and can thus be captured by selection. In this study we address genomic selection in a practical fruit breeding context applying it to a breeding population of table grape obtained from a cross between the hybrid genotype D8909-15 (Vitis rupestris × Vitis arizonica/girdiana), which is resistant to dagger nematode and Pierces disease (PD), and B90-116, a susceptible Vitis vinifera cultivar with desirable fruit characteristics. Our aim was to enhance the knowledge on the genomic variation of agronomical traits in table grape populations for future use in marker-assisted selection (MAS) and GS, by discovering a set of molecular markers associated with genomic regions involved in this variation. A number of Quantitative Trait Loci (QTL) were discovered but this method is inaccurate and the genetic architecture of the studied population was better captured by the BLasso method of genomic selection, which allowed for efficient inference about the genetic contribution of the various marker loci. The technology of genomic selection afforded greater efficiency than QTL analysis and can be very useful in speeding up the selection procedures for agronomic traits in table grapes.(AU)


Assuntos
Melhoramento Vegetal , Seleção Genética , Vitis/genética
3.
Sci. agric ; 73(2): 134-141, Mar.-Apr. 2016. ilus, tab
Artigo em Inglês | VETINDEX | ID: biblio-1497550

Resumo

It has been argued that genetic diversity in crop varieties has been on the decline in recent times due to plant breeding. This can have serious consequences for both the genetic vulnerability of crops and their plasticity when responding to changes in production environments. It is, therefore, vital for plant breeding programs to maintain sufficient diversity in the cultivars deployed for multi-period cultivation. In this study, to understand the temporal genetic diversity in durum wheat, 21 improved durum wheat cultivars released in Morocco, since 1956 and five exotic cultivars currently used in crossing programs were analyzed using 13 microsatellite markers. The analysis revealed a total of 44 alleles and average genetic diversity of 0.485 with genetic distances ranging from 0.077 to 0.846 at 13 microsatellite loci in Moroccan durum wheat cultivars. All the durum cultivars of Morocco could be distinguished using the 13 microsatellite markers. The total number of alleles and unique alleles were highest in cultivars developed before 1990, decreasing in cultivars developed during the 1990s and 2000s, indicating that recent durum breeding efforts have reduced allelic richness in recent cultivars. Thus, deployment of exotic durum wheat lines in breeding programs could enhance genetic diversity in durum wheat cultivars.


Assuntos
Melhoramento Vegetal , Repetições de Microssatélites , Triticum/genética , Variação Genética , Marrocos
4.
Sci. agric. ; 73(2): 134-141, Mar.-Apr. 2016. ilus, tab
Artigo em Inglês | VETINDEX | ID: vti-30570

Resumo

It has been argued that genetic diversity in crop varieties has been on the decline in recent times due to plant breeding. This can have serious consequences for both the genetic vulnerability of crops and their plasticity when responding to changes in production environments. It is, therefore, vital for plant breeding programs to maintain sufficient diversity in the cultivars deployed for multi-period cultivation. In this study, to understand the temporal genetic diversity in durum wheat, 21 improved durum wheat cultivars released in Morocco, since 1956 and five exotic cultivars currently used in crossing programs were analyzed using 13 microsatellite markers. The analysis revealed a total of 44 alleles and average genetic diversity of 0.485 with genetic distances ranging from 0.077 to 0.846 at 13 microsatellite loci in Moroccan durum wheat cultivars. All the durum cultivars of Morocco could be distinguished using the 13 microsatellite markers. The total number of alleles and unique alleles were highest in cultivars developed before 1990, decreasing in cultivars developed during the 1990s and 2000s, indicating that recent durum breeding efforts have reduced allelic richness in recent cultivars. Thus, deployment of exotic durum wheat lines in breeding programs could enhance genetic diversity in durum wheat cultivars.(AU)


Assuntos
Triticum/genética , Variação Genética , Melhoramento Vegetal , Repetições de Microssatélites , Marrocos
5.
Sci. agric ; 72(1): 47-52, Jan.-Feb. 2015. tab, ilus, graf
Artigo em Inglês | VETINDEX | ID: biblio-1497464

Resumo

Biological nitrogen fixation (BNF) has global economic and environmental importance, but has often not been considered in soybean [Glycine max (L.) Merrill] breeding programs. Knowing the genetic diversity and structure of a population within a germoplasm represent a key step for breeding programs. This study aimed at determining the structure of the population and diversity of soybean with regard to BNF and protein content in grain. In total, 191 accessions were evaluated, including 171 commercial soybean cultivars, developed and released by public institutions and private companies in Brazil, and 20 ancestral lines. The genotypes were chosen to represent four genetic groups: 128 Brazilian public genotypes, 20 exotic, and 43 genotypes from private companies. Soybeans were genotyped with 22 SSR markers, previously described as associated with BNF and protein content. Genetic diversity was evaluated using the DARwin 5.0 software. Population structure was inferred by principal component analysis and by the STRUCTURE software. The accessions were distributed in two groups: one clustering approximately 50 % of the accessions, from Brazilian public and private companies; the other one clustering 45 % of the accessions, including Brazilian, exotic and private germoplasms. Some accessions (5 %) were not grouped in any cluster. Principal component analysis explained 29 % of the total variance and there was a tendency to cluster the accessions into two groups. Similar results were obtained with the STRUCTURE, clearly showing two subpopulations. There is variability for BNF and protein content amongst both modern germoplasms cultivated in Brazil and ancestral lines. This variability could be better explored in soybean breeding programs to improve these traits.


Assuntos
Fixação de Nitrogênio , Melhoramento Vegetal , Glycine max/genética
6.
Sci. agric. ; 72(1): 47-52, Jan.-Feb. 2015. tab, ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-30065

Resumo

Biological nitrogen fixation (BNF) has global economic and environmental importance, but has often not been considered in soybean [Glycine max (L.) Merrill] breeding programs. Knowing the genetic diversity and structure of a population within a germoplasm represent a key step for breeding programs. This study aimed at determining the structure of the population and diversity of soybean with regard to BNF and protein content in grain. In total, 191 accessions were evaluated, including 171 commercial soybean cultivars, developed and released by public institutions and private companies in Brazil, and 20 ancestral lines. The genotypes were chosen to represent four genetic groups: 128 Brazilian public genotypes, 20 exotic, and 43 genotypes from private companies. Soybeans were genotyped with 22 SSR markers, previously described as associated with BNF and protein content. Genetic diversity was evaluated using the DARwin 5.0 software. Population structure was inferred by principal component analysis and by the STRUCTURE software. The accessions were distributed in two groups: one clustering approximately 50 % of the accessions, from Brazilian public and private companies; the other one clustering 45 % of the accessions, including Brazilian, exotic and private germoplasms. Some accessions (5 %) were not grouped in any cluster. Principal component analysis explained 29 % of the total variance and there was a tendency to cluster the accessions into two groups. Similar results were obtained with the STRUCTURE, clearly showing two subpopulations. There is variability for BNF and protein content amongst both modern germoplasms cultivated in Brazil and ancestral lines. This variability could be better explored in soybean breeding programs to improve these traits.(AU)


Assuntos
Glycine max/genética , Fixação de Nitrogênio , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA