Resumo
This study was conducted using Analytic Hierarchy Process (AHP) in order to rank broiler breeding farms in Zanjan province, Iran, regarding buildings, installations, and equipment to determine their effects on production factors. Data on 108 farms were collected using designed forms. This data was analyzed based on the effectiveness of each parameter in the production and management category according to experts opinion. The results indicated that ventilation systems (fans, inlets, and damper) as well as wall and roof insulation in poultry houses, constituted 66% of the technology coefficient. The stocking density increased through improvement of the mechanization coefficient. Most of these farms used longitudinal or tunnel ventilation and a combination of small and large fans. Roof insulation was mostly done using glass wool, and corrugated plastic while installing the heaters outside the poultry house. In these farms, the use of nipple drinkers and plate feeders was more prevalent. Moreover, the results showed that feed conversion and production indices have a significant correlation with mechanization coefficient so that farms with better mechanization coefficients had lower conversion ratio (p=0.04) and higher production indices (p=0.015). In general, the results indicated that ventilation and air inlet systems, as well as wall and roof building technologies have the greatest influence on the mechanization coefficient, while better mechanization coefficients translated into improvements in production efficiency and economic performance of poultry farms.(AU)
Assuntos
Animais , Aves Domésticas/crescimento & desenvolvimento , Respiração Artificial , Respiração Artificial/veterinária , Instalações Industriais e de ManufaturaResumo
This study was conducted using Analytic Hierarchy Process (AHP) in order to rank broiler breeding farms in Zanjan province, Iran, regarding buildings, installations, and equipment to determine their effects on production factors. Data on 108 farms were collected using designed forms. This data was analyzed based on the effectiveness of each parameter in the production and management category according to experts opinion. The results indicated that ventilation systems (fans, inlets, and damper) as well as wall and roof insulation in poultry houses, constituted 66% of the technology coefficient. The stocking density increased through improvement of the mechanization coefficient. Most of these farms used longitudinal or tunnel ventilation and a combination of small and large fans. Roof insulation was mostly done using glass wool, and corrugated plastic while installing the heaters outside the poultry house. In these farms, the use of nipple drinkers and plate feeders was more prevalent. Moreover, the results showed that feed conversion and production indices have a significant correlation with mechanization coefficient so that farms with better mechanization coefficients had lower conversion ratio (p=0.04) and higher production indices (p=0.015). In general, the results indicated that ventilation and air inlet systems, as well as wall and roof building technologies have the greatest influence on the mechanization coefficient, while better mechanization coefficients translated into improvements in production efficiency and economic performance of poultry farms.
Assuntos
Animais , Aves Domésticas/crescimento & desenvolvimento , Instalações Industriais e de Manufatura , Respiração Artificial , Respiração Artificial/veterináriaResumo
ABSTRACT This paper intends to outline a model of multi-criteria analysis to pinpoint the most suitable energy source for heating aviaries in poultry broiler production from the point of view of the farmer and under environmental logic. Therefore, the identification of criteria was enabled through an exploratory study in three poultry broiler production units located in the mountain region of Rio Grande do Sul. In order to identify the energy source, the Analytic Hierarchy Process was applied. The criteria determined and validated in the research contemplated the cost of energy source, leadtime, investment in equipment, energy efficiency, quality of life and environmental impacts. The result of applying the method revealed firewood as the most appropriate energy for heating. The decision support model developed could be replicated in order to strengthen the criteria and energy alternatives presented, besides identifying new criteria and alternatives that were not considered in this study.(AU)
Assuntos
Animais , Aves Domésticas/anormalidades , Aves Domésticas/crescimento & desenvolvimento , Aves Domésticas/metabolismoResumo
ABSTRACT This paper intends to outline a model of multi-criteria analysis to pinpoint the most suitable energy source for heating aviaries in poultry broiler production from the point of view of the farmer and under environmental logic. Therefore, the identification of criteria was enabled through an exploratory study in three poultry broiler production units located in the mountain region of Rio Grande do Sul. In order to identify the energy source, the Analytic Hierarchy Process was applied. The criteria determined and validated in the research contemplated the cost of energy source, leadtime, investment in equipment, energy efficiency, quality of life and environmental impacts. The result of applying the method revealed firewood as the most appropriate energy for heating. The decision support model developed could be replicated in order to strengthen the criteria and energy alternatives presented, besides identifying new criteria and alternatives that were not considered in this study.