Resumo
The properties and agglutination activity of acutolysin C, a hemorrhagic metalloproteinase obtained from Agkistrodon acutus venom, were studied herein. Acutolysin C is a basic glycoprotein consisting of a single polypeptide chain with a molecular weight of 23.1 kDa and pI 8.7, containing one Zn2+ and one Ca2+ per molecule. It possesses caseinolytic, weak lethal (LD50 = 7.6 mg/kg) and weak hemorrhagic (MHD = 12.0 µg) activities, but does not present fibrinolytic, fibrinogenolytic, arginine esterase and phospholipase A2 actions. In addition, it revealed agglutination activity on some animal lymphocytes, including five species of mammals, six of birds, three of reptiles and one of amphibians, but had no effect on lymphocytes from two species of reptiles, one amphibian and nine species of fish. It had no effects on the erythrocytes and platelets of all 26 animal species tested. Both leucoagglutination and caseinolytic activities were inhibited by EDTA; while cysteine, 2-mercaptoethanol, 1,4-dithiothreitol, glutathione, serum against acutolysin C and serum against homologous snake venom as well as glucose, sucrose, mannose, lactose and galactose had no effects on inhibition. The lowest concentration of acutolysin C that induced mouse lymphocyte agglutination was 2.5 µg/mL. Acutolysin C is an interesting substance since it is the first member of the hemorrhagin family to be shown to have leucoagglutination activity. (AU)
Assuntos
Venenos de Serpentes , Agkistrodon , Aglutinação , Metaloproteases , HemorragiaResumo
The properties and agglutination activity of acutolysin C, a hemorrhagic metalloproteinase obtained from Agkistrodon acutus venom, were studied herein. Acutolysin C is a basic glycoprotein consisting of a single polypeptide chain with a molecular weight of 23.1 kDa and pI 8.7, containing one Zn2+ and one Ca²+ per molecule. It possesses caseinolytic, weak lethal (LD50 = 7.6 mg/kg) and weak hemorrhagic (MHD = 12.0 μg) activities, but does not present fibrinolytic, fibrinogenolytic, arginine esterase and phospholipase A2 actions. In addition, it revealed agglutination activity on some animal lymphocytes, including five species of mammals, six of birds, three of reptiles and one of amphibians, but had no effect on lymphocytes from two species of reptiles, one amphibian and nine species of fish. It had no effects on the erythrocytes and platelets of all 26 animal species tested. Both leucoagglutination and caseinolytic activities were inhibited by EDTA; while cysteine, 2-mercaptoethanol, 1,4-dithiothreitol, glutathione, serum against acutolysin C and serum against homologous snake venom as well as glucose, sucrose, mannose, lactose and galactose had no effects on inhibition. The lowest concentration of acutolysin C that induced mouse lymphocyte agglutination was 2.5 μg/mL. Acutolysin C is an interesting substance since it is the first member of the hemorrhagin family to be shown to have leucoagglutination activity.(AU)
Assuntos
Animais , Elapidae/classificação , Venenos/toxicidade , Mimosa pudica/farmacologia , Antídotos/farmacologia , Fosfolipases A2Resumo
The serum kinetics of Calloselasma rhodostoma (Malayan pit viper) venom - specifically two of its components, the major hemorrhagin (rhodostoxin) and a thrombin-like enzyme - was examined in a rabbit by double-sandwich enzyme-linked immunosorbent assay (ELISA). The animal received intramuscularly a 1.0-mg/kg dose of C. rhodostoma venom. The venom level in serum peaked 12 hours after the injection, followed by a gradual decline and finally reached low rates 72 hours after administration. The serum kinetic profile of venom components, however, did not correspond to the profile of the whole C. rhodostoma venom. The serum levels of the C. rhodostoma thrombin-like enzyme increased slowly and peaked only 48 hours post-injection. Then both thrombin-like enzyme and rhodostoxin remained at relatively high levels 72 hours after administration. Data suggest that various venom components bind to tissue at the injection site with different affinities and that conjugated venom components were continuously released into circulation at different rates. The prolonged high serum levels of both thrombin-like enzyme and hemorrhagin are consistent with the clinical picture of prolonged clotting deficiency in severe cases of C. rhodostoma envenomation. Our results also suggest that since venom components are being released into and eliminated from the circulation at different rates, the "average composition" of the venom antigen in the circulation changes over time. This implies that data from ELISA quantification of antigen levels from serum venom employing "whole venom" as reagent must be interpreted with care.(AU)
Assuntos
Animais , Coelhos , Trombina , Crotalinae/sangue , Indicadores e Reagentes , Ensaio de Imunoadsorção Enzimática , CinéticaResumo
The serum kinetics of Calloselasma rhodostoma (Malayan pit viper) venom - specifically two of its components, the major hemorrhagin (rhodostoxin) and a thrombin-like enzyme - was examined in a rabbit by double-sandwich enzyme-linked immunosorbent assay (ELISA). The animal received intramuscularly a 1.0-mg/kg dose of C. rhodostoma venom. The venom level in serum peaked 12 hours after the injection, followed by a gradual decline and finally reached low rates 72 hours after administration. The serum kinetic profile of venom components, however, did not correspond to the profile of the whole C. rhodostoma venom. The serum levels of the C. rhodostoma thrombin-like enzyme increased slowly and peaked only 48 hours post-injection. Then both thrombin-like enzyme and rhodostoxin remained at relatively high levels 72 hours after administration. Data suggest that various venom components bind to tissue at the injection site with different affinities and that conjugated venom components were continuously released into circulation at different rates. The prolonged high serum levels of both thrombin-like enzyme and hemorrhagin are consistent with the clinical picture of prolonged clotting deficiency in severe cases of C. rhodostoma envenomation. Our results also suggest that since venom components are being released into and eliminated from the circulation at different rates, the "average composition" of the venom antigen in the circulation changes over time. This implies that data from ELISA quantification of antigen levels from serum venom employing "whole venom" as reagent must be interpreted with care.