Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Braz. J. Microbiol. ; 49(4): 695-702, Oct.-Dec. 2018. tab, ilus
Artigo em Inglês | VETINDEX | ID: vti-738193

Resumo

Antarctica harbors a great diversity of microorganisms, including bacteria, archaea, microalgae and yeasts. The Pseudomonas genus is one of the most diverse and successful bacterial groups described to date, but only eight species isolated from Antarctica have been characterized. Here, we present three potentially novel species isolated on King George Island. The most abundant isolates from four different environments, were genotypically and phenotypically characterized. Multilocus sequence analysis and 16S rRNA gene analysis of a sequence concatenate for six genes (16S, aroE, glnS, gyrB, ileS and rpoD), determined one of the isolates to be a new Pseudomonas mandelii strain, while the other three are good candidates for new Pseudomonas species. Additionally, genotype analyses showed the three candidates to be part of a new subgroup within the Pseudomonas fluorescens complex, together with the Antarctic species Pseudomonas antarctica and Pseudomonas extremaustralis. We propose terming this new subgroup P. antarctica. Likewise, phenotypic analyses using API 20 NE and BIOLOG® corroborated the genotyping results, confirming that all presented isolates form part of the P. fluorescens complex. Pseudomonas genus research on the Antarctic continent is in its infancy. To understand these microorganisms role in this extreme environment, the characterization and description of new species is vital.(AU)

2.
Braz. J. Microbiol. ; 43(4): 1406-1413, Oct.-Dec. 2012. graf
Artigo em Inglês | VETINDEX | ID: vti-2138

Resumo

The purpose of this study was to investigate the effect of different levels of Pseudomonas fluorescens (10² and 10(6)log10 cfu/ml)and Lactobacillus plantarum (10² and 10(4)log10 cfu/ml)on the growth of Escherichia coli O157:H7 on beef loins. Beef loins inoculated with E. coli O157:H7 and P. fluorescens were aerobically stored for 7 days at 4 ºC, while those inoculated with E. coli O157:H7 and L. plantarum were vacuum packaged and stored for 8 weeks at 4 ºC. Aerobic Plate Counts (APC), E. coli O157:H7 and either P. fluorescens or L. plantarum counts were determined at different storage intervals. For the aerobically packaged beef loins, E. coli O157:H7 was detected throughout the 7 day storage period regardless of the P. fluorescens level in the inoculum. For the vacuum packaged beef loins, similar inoculum levels of E. coli O157:H7 and L. plantarum allowed E. coli O157:H7 to survive until week 5 of storage, while a higher inoculum level of L. plantarum inhibited E. coli O157:H7 from week 3. Once fresh beef has been contaminated with E. coli O157:H7, the level of P. fluorescens in the background flora does not inhibit its survival and growth. However, under vacuum storage, the application of L. plantarum as a biopreservative inhibits the survival of E. coli O157:H7 on beef. The higher the level of L. plantarum in the system, the earlier the onset of the inhibition. Farmers and abattoirs have to strengthen preventive strategies to eliminate contamination of beef carcasses with E. coli O157:H7.(AU)


Assuntos
Animais , Escherichia/crescimento & desenvolvimento , Pseudomonas fluorescens/classificação , Carne/análise , Lactobacillus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA