Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Braz. J. Microbiol. ; 47(4): 993-999, Out-Dez. 2016. tab, ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-23302

Resumo

The open reading frame of a Brazilian bovine viral diarrhea virus (BVDV) strain, IBSP4ncp, was recombined with the untranslated regions of the reference NADL strain by homologous recombination in Saccharomyces cerevisiae, resulting in chimeric full-length cDNA clones of BVDV (chi-NADL/IBSP4ncp/2 and chi-NADL/IBSP4ncp/3). The recombinant clones were successfully recovered, resulting in viable viruses, having the kinetics of replication, focus size, and morphology similar to those of the parental virus, IBSP4ncp. In addition, the chimeric viruses remained stable for at least 10 passages in cell culture, maintaining their replication efficiency unaltered. Nucleotide sequencing revealed a few point mutations; nevertheless, the phenotype of the rescued viruses was nearly identical to that of the parental virus in all experiments. Thus, genetic stability of the chimeric clones and their phenotypic similarity to the parental virus confirm the ability of the yeast-based homologous recombination to maintain characteristics of the parental virus from which the recombinant viruses were derived. The data also support possible use of the yeast system for the manipulation of the BVDV genome.(AU)


Assuntos
Animais , Bovinos , Bovinos/genética , Bovinos/microbiologia , Leveduras/crescimento & desenvolvimento , Leveduras/genética , Infecções por Pestivirus/veterinária , Células Clonais/microbiologia
2.
Braz. J. Microbiol. ; 45(4): 1555-1563, Oct.-Dec. 2014. ilus, graf, tab
Artigo em Inglês | VETINDEX | ID: vti-26914

Resumo

The Infectious Bursal Disease Virus (IBDV) causes immunosuppression in young chickens. Advances in molecular virology and vaccines for IBDV have been achieved by viral reverse genetics (VRG). VRG for IBDV has undergone changes over time, however all strategies used to generate particles of IBDV involves multiple rounds of amplification and need of in vitro ligation and restriction sites. The aim of this research was to build the world's first VRG for IBDV by yeast-based homologous recombination; a more efficient, robust and simple process than cloning by in vitro ligation. The wild type IBDV (Wt-IBDV-Br) was isolated in Brazil and had its genome cloned in pJG-CMV-HDR vector by yeast-based homologous recombination. The clones were transfected into chicken embryo fibroblasts and the recovered virus (IC-IBDV-Br) showed genetic stability and similar phenotype to Wt-IBDV-Br, which were observed by nucleotide sequence, focus size/morphology and replication kinetics, respectively. Thus, IBDV reverse genetics by yeast-based homologous recombination provides tools to IBDV understanding and vaccines/viral vectors development.


Assuntos
Animais , Embrião de Galinha , Recombinação Homóloga , Vírus da Doença Infecciosa da Bursa/genética , Genética Reversa/métodos , Brasil , Células Cultivadas , Fibroblastos/virologia , Vetores Genéticos , Vírus da Doença Infecciosa da Bursa/isolamento & purificação , Saccharomyces cerevisiae/genética , Transfecção , Cultura de Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA