Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Intervalo de ano de publicação
1.
Sci. agric ; 73(5): 478-486, 2016. graf, tab, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1497586

Resumo

The flowering time is regarded as an important factor that affects yield in various crops. In order to understand how the molecular basis controlling main components of earliness in tomato (Solanum lycopersicum L.), and to deduce whether the correlation between fruit weight, days to flowering and seed weight, is caused by pleiotropic effects or genetic linkage, a QTLs analysis was carried out using an F2 interspecific population derived from the cross of S. lycopersicum and S. pimpinellifolium. The analysis revealed that most of the components related to earliness were independent due to the absence of phenotypic correlation and lack of co-localization of their QTLs. QTLs affecting the flowering time showed considerable variation over time in values of explained phenotypic variation and average effects, which suggested dominance becomes more evident over time. The path analysis showed that traits such as days to flowering, seed weight, and length of the first leaf had a significant effect on the expression of fruit weight, confirming that their correlations were due to linkage. This result was also confirmed in two genomic regions located on chromosomes 1 and 4, where despite showing high co-localization of QTLs associated to days to flowering, seed weight and fruit weight, the presence and absence of epistasis in dfft1.1 × dftt4.1 and fw1.1 × fw4.1, suggested that the linkage was the main cause of the co-localization.


Assuntos
Epistasia Genética/genética , Fenótipo , Fenômenos Fisiológicos Vegetais/genética , Flores , Ligação Genética , Pleiotropia Genética , Sementes
2.
Sci. agric. ; 73(5): 478-486, 2016. graf, tab, ilus
Artigo em Inglês | VETINDEX | ID: vti-684160

Resumo

The flowering time is regarded as an important factor that affects yield in various crops. In order to understand how the molecular basis controlling main components of earliness in tomato (Solanum lycopersicum L.), and to deduce whether the correlation between fruit weight, days to flowering and seed weight, is caused by pleiotropic effects or genetic linkage, a QTLs analysis was carried out using an F2 interspecific population derived from the cross of S. lycopersicum and S. pimpinellifolium. The analysis revealed that most of the components related to earliness were independent due to the absence of phenotypic correlation and lack of co-localization of their QTLs. QTLs affecting the flowering time showed considerable variation over time in values of explained phenotypic variation and average effects, which suggested dominance becomes more evident over time. The path analysis showed that traits such as days to flowering, seed weight, and length of the first leaf had a significant effect on the expression of fruit weight, confirming that their correlations were due to linkage. This result was also confirmed in two genomic regions located on chromosomes 1 and 4, where despite showing high co-localization of QTLs associated to days to flowering, seed weight and fruit weight, the presence and absence of epistasis in dfft1.1 × dftt4.1 and fw1.1 × fw4.1, suggested that the linkage was the main cause of the co-localization.(AU)


Assuntos
Fenótipo , Flores , Epistasia Genética/genética , Fenômenos Fisiológicos Vegetais/genética , Pleiotropia Genética , Ligação Genética , Sementes
3.
Braz. J. Microbiol. ; 46(2): 601-611, Apr.-Jun. 2015. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-481379

Resumo

Deinococcus radiodurans (DR) is an extremophile that is well known for its resistance to radiation, oxidants and desiccation. The gene dr1790 of D. radiodurans was predicted to encode a yellow-related protein. The primary objective of the present study was to characterize the biological function of the DR1790 protein, which is a member of the ancient yellow/major royal jelly (MRJ) protein family, in prokaryotes. Fluorescence labeling demonstrated that the yellow-related protein encoded by dr1790 is a membrane protein. The deletion of the dr1790 gene decreased the cell growth rate and sensitivity to hydrogen peroxide and radiation and increased the membrane permeability of D. radiodurans. Transcript profiling by microarray and RT-PCR analyses of the dr1790 deletion mutant suggested that some genes that are involved in protein secretion and transport were strongly suppressed, while other genes that are involved in protein quality control, such as chaperones and proteases, were induced. In addition, the expression of genes with predicted functions that are involved in antioxidant systems, electron transport, and energy metabolism was significantly altered through the disruption of dr1790. Moreover, the results of proteomic analyses using 2-DE and MS also demonstrated that DR1790 contributed to D. radiodurans survival. Taken together, these results indicate that the DR1790 protein from the ancient yellow protein family plays a pleiotropic role in the survival of prokaryotic cells and contributes to the extraordinary resistance of D. radiodurans against oxidative and radiation stresses.(AU)


Assuntos
Deinococcus/genética , Genes Bacterianos , Pleiotropia Genética , Mutagênese Insercional , Proteínas de Bactérias/genética , Membrana Celular/fisiologia , Deinococcus , Deinococcus/crescimento & desenvolvimento , Deinococcus/efeitos da radiação , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética , Peróxido de Hidrogênio/toxicidade , Proteínas de Membrana/genética , Análise em Microsséries , Viabilidade Microbiana , Viabilidade Microbiana/efeitos da radiação , Permeabilidade , Radiação Ionizante , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA