Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Acta cir. bras ; 38: e380123, 2023. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1429535

Resumo

Purpose: Myocardial ischemia/reperfusion injury (MIRI) leads to myocardial tissue necrosis, which will increase the size of myocardial infarction. The study examined the protective effect and mechanism of the Guanxin Danshen formula (GXDSF) on MIRI in rats. Methods: MIRI model was performed in rats; rat H9C2 cardiomyocytes were hypoxia-reoxygenated to establish a cell injury model. Results: The GXDSF significantly reduced myocardial ischemia area, reduced myocardial structural injury, decreased the levels of interleukin (IL-1ß, IL-6) in serum, decreased the activity of myocardial enzymes, increased the activity of superoxide dismutase (SOD), and reduced glutathione in rats with MIRI. The GXDSF can reduce the expression of nucleotide- binding oligomerization domain, leucine-rich repeat and pyrin domain containing nod-like receptor family protein 3 (NLRP3), IL-1ß, caspase-1, and gasdermin D (GSDMD) in myocardial tissue cells. Salvianolic acid B and notoginsenoside R1 protected H9C2 cardiomyocytes from hypoxia and reoxygenation injury and reduced the levels of tumor necrosis factor α (TNF-α) and IL-6 in the cell supernatant, decreasing the NLRP3, IL-18, IL-1ß, caspase-1, and GSDMD expression in H9C2 cardiomyocytes. GXDSF can reduce the myocardial infarction area and alleviate the damage to myocardial structure in rats with MIRI, which may be related to the regulation of the NLRP3. Conclusion: GXDSF reduces MIRI in rat myocardial infarction injury, improves structural damage in myocardial ischemia injury, and reduces myocardial tissue inflammation and oxidative stress by lowering inflammatory factors and controlling focal cell death signaling pathways.


Assuntos
Animais , Ratos , Reperfusão Miocárdica , Traumatismo por Reperfusão , Ginsenosídeos/administração & dosagem , Proteína 3 que Contém Domínio de Pirina da Família NLR
2.
Acta cir. bras ; 37(7): e370701, 2022. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1402968

Resumo

Purpose: Tanshinone IIA is a well-known lipophilic active constituent refined from traditional Chinese medicines, danshen. It has been previously demonstrated to possess various biological properties, including anti-inflammatory, antioxidant, promoting angiogenesis effect and so on. However, the mechanism of tanshinone IIA on myocardial ischemia-reperfusion injury (MI/RI) remains unclear. In this study, we investigated the effect of tanshinone IIA on MI/RI. Methods: MI/RI rat models were set up. Echocardiographic evaluation and hematoxylin and eosin staining were performed to analyze the cardiac function and morphology of MI/RI. Western blot was conducted for the detection of protein expression of pyrin domain containing 3 (NLRP3) and caspase-1 in heart tissues. Flow cytometry and real-time polymerase chain reaction were used for the detection of proinflammatory cytokines and Th17 cells differentiation. Results: We found that tanshinone IIA alleviated the myocardial damage of MI/RI, ameliorated the overall and local inflammatory reaction, and produced a cardioprotective effect by inhibiting of NLRP3 inflammasome activation and Th17/Treg cells differentiation. Conclusions: Our results highlighted the cardio-protective effect of tanshinone IIA on MI/RI and uncovered its underlying mechanism related to the NLRP3 inflammasome inhibition and the modulation of Th17/Treg cells differentiation.


Assuntos
Animais , Ratos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Isquemia Miocárdica/tratamento farmacológico , Salvia miltiorrhiza/química , Células Th17 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Medicina Tradicional Chinesa
3.
Acta cir. bras ; 37(7): e370706, 2022. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1402967

Resumo

Purpose: Abnormal activation of NOD-like receptor protein 3 (NLRP3) inflammasome can lead to the occurrence and progression of acute pancreatitis. This study investigated the protective effect of MCC950 on pancreatitis mice. Methods: Eighteen mice were randomly divided into control group, severe acute pancreatitis (SAP) group and SAP+MCC950 group. Serum interleukin (IL)-1ß, IL-6 and tumor necrosis factor-α (TNF-α) were measured by ELISA. Hematoxylin and eosin (HE) staining was used to evaluate the pathological damage. Western blotting was used to detect the expression of NLRP3 inflammasome and tight junction proteins in the small intestine and pancreas. Results: MCC950 could reduce the levels of IL-6 and IL-1ß in SAP mice. After treatment with MCC950, the expression levels of NLRP3 inflammasome in the pancreas of SAP mice were significantly reduced and the pathological damage to the pancreas and intestine was alleviated. Compared with the control group, the expression of tight junction protein (ZO-1,occludin and claudin-4) in the intestinal mucosa of SAP mice was decreased, and the expression of claudin-4 and occludin were upregulated after MCC950 treatment. Conclusions: MCC950 can inhibit NLRP3 inflammasome activation and significantly reduce the inflammatory response and delay the process of pancreatitis. It has therapeutic potential in the treatment of acute pancreatitis.


Assuntos
Animais , Camundongos , Pancreatite/tratamento farmacológico , Junções Íntimas , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Intestino Delgado/patologia
4.
Acta cir. bras ; 36(11): e361106, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360062

Resumo

ABSTRACT Purpose: To delve into the influence of paeoniflorin (PA) on abating primary biliary cholangitis (PBC)-induced liver fibrosis and its causative role. Methods: Our team allocated the mice to control group, PA group, PBC group and PBC+PA group. We recorded the weight change of mice in each group. We used Masson staining for determining liver fibrosis, immunofluorescence staining for measuring tumor necrosis factor-α (TNF-α) expression, quantitative real-time polymerase chain reaction (qRT-PCR) for assaying related gene expression, as well as Western blot for testing related protein expression. Results: The weight of PBC model mice declined. Twenty-four weeks after modeling, the positive rate of anti-mitochondrial antibody-M2 (AMA-M2) in PBC mice reached 100%. Alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), hydroxyproline (HYP), laminin (LN), procollagen type III (PC III), and malondialdehyde (MDA) contents saliently waxed (p<0.01). Meanwhile, superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) activity patently waned (p<0.01). Liver fibrosis levels were flagrantly higher (p<0.01), and TNF-α, NOD-like receptor protein 3 (NLRP3), caspase-1, interleukin-18 (IL-18), and interleukin-1β (IL-1β) protein or gene expression were manifestly up-regulated (p<0.01). PA could restore the weight of PBC mice, strikingly restrain the positive expression of AMA-M2, and down-regulate serum ALP, ALT, AST, HYP, LN, PC III, MDA in PBC mice (p<0.01). PA could also significantly up-regulate SOD and GSH-px levels (p<0.01), down-regulate IL-1β, IL-18, caspase-1, NLRP3, and TNF-α protein or gene expression in PBC mice (p<0.01) and inhibit liver fibrosis levels (p<0.01). Conclusions: PA can reduce PBC-induced liver fibrosis in mice and may function by curbing the formation of NLRP3.


Assuntos
Animais , Camundongos , Monoterpenos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Glucosídeos/farmacologia , Cirrose Hepática/prevenção & controle , Cirrose Hepática/tratamento farmacológico , Aspartato Aminotransferases , Fígado/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA