Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J. venom. anim. toxins incl. trop. dis ; 29: e20220085, 2023. ilus, graf
Artigo em Inglês | VETINDEX | ID: biblio-1435587

Resumo

Background: Conotoxins exhibit great potential as neuropharmacology tools and therapeutic candidates due to their high affinity and specificity for ion channels, neurotransmitter receptors or transporters. The traditional methods to discover new conotoxins are peptide purification from the crude venom or gene amplification from the venom duct. Methods: In this study, a novel O1 superfamily conotoxin Tx6.7 was directly cloned from the genomic DNA of Conus textile using primers corresponding to the conserved intronic sequence and 3' UTR elements. The mature peptide of Tx6.7 (DCHERWDW CPASLLGVIYCCEGLICFIAFCI) was synthesized by solid-phase chemical synthesis and confirmed by mass spectrometry. Results: Patch clamp experiments on rat DRG neurons showed that Tx6.7 inhibited peak calcium currents by 59.29 ± 2.34% and peak potassium currents by 22.33 ± 7.81%. In addition, patch clamp on the ion channel subtypes showed that 10 µM Tx6.7 inhibited 56.61 ± 3.20% of the hCaV1.2 currents, 24.67 ± 0.91% of the hCaV2.2 currents and 7.30 ± 3.38% of the hNaV1.8 currents. Tx6.7 had no significant toxicity to ND7/23 cells and increased the pain threshold from 0.5 to 4 hours in the mouse hot plate assay. Conclusion: Our results suggested that direct cloning of conotoxin sequences from the genomic DNA of cone snails would be an alternative approach to obtaining novel conotoxins. Tx6.7 could be used as a probe tool for ion channel research or a therapeutic candidate for novel drug development.(AU)


Assuntos
Animais , Cálcio/isolamento & purificação , Conotoxinas/genética , Caramujo Conus/química
2.
J. venom. anim. toxins incl. trop. dis ; 27: e20210023, 2021. tab, graf, ilus, mapas
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1346437

Resumo

Diverse and unique bioactive neurotoxins known as conopeptides or conotoxins are produced by venomous marine cone snails. Currently, these small and stable molecules are of great importance as research tools and platforms for discovering new drugs and therapeutics. Therefore, the characterization of Conus venom is of great significance, especially for poorly studied species. Methods: In this study, we used bioanalytical techniques to determine the venom profile and emphasize the functional composition of conopeptides in Conus taeniatus, a neglected worm-hunting cone snail. Results: The proteomic analysis revealed that 84.0% of the venom proteins were between 500 and 4,000 Da, and 16.0% were > 4,000 Da. In C. taeniatus venom, 234 peptide fragments were identified and classified as conotoxin precursors or non-conotoxin proteins. In this process, 153 conotoxin precursors were identified and matched to 23 conotoxin precursors and hormone superfamilies. Notably, the four conotoxin superfamilies T (22.87%), O1 (17.65%), M (13.1%) and O2 (9.8%) were the most abundant peptides in C. taeniatus venom, accounting for 63.40% of the total conotoxin diversity. On the other hand, 48 non-conotoxin proteins were identified in the venom of C. taeniatus. Moreover, several possibly biologically active peptide matches were identified, and putative applications of the peptides were assigned. Conclusion: Our study showed that the composition of the C. taeniatus-derived proteome is comparable to that of other Conus species and contains an effective mix of toxins, ionic channel inhibitors and antimicrobials. Additionally, it provides a guidepost for identifying novel conopeptides from the venom of C. taeniatus and discovering conopeptides of potential pharmaceutical importance.(AU)


Assuntos
Animais , Proteoma , Conotoxinas , Caramujo Conus , Venenos de Moluscos , Neurotoxinas , Produtos Biológicos
3.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20210023, 2021. tab, graf, ilus, mapas
Artigo em Inglês | VETINDEX | ID: vti-31889

Resumo

Diverse and unique bioactive neurotoxins known as conopeptides or conotoxins are produced by venomous marine cone snails. Currently, these small and stable molecules are of great importance as research tools and platforms for discovering new drugs and therapeutics. Therefore, the characterization of Conus venom is of great significance, especially for poorly studied species. Methods: In this study, we used bioanalytical techniques to determine the venom profile and emphasize the functional composition of conopeptides in Conus taeniatus, a neglected worm-hunting cone snail. Results: The proteomic analysis revealed that 84.0% of the venom proteins were between 500 and 4,000 Da, and 16.0% were > 4,000 Da. In C. taeniatus venom, 234 peptide fragments were identified and classified as conotoxin precursors or non-conotoxin proteins. In this process, 153 conotoxin precursors were identified and matched to 23 conotoxin precursors and hormone superfamilies. Notably, the four conotoxin superfamilies T (22.87%), O1 (17.65%), M (13.1%) and O2 (9.8%) were the most abundant peptides in C. taeniatus venom, accounting for 63.40% of the total conotoxin diversity. On the other hand, 48 non-conotoxin proteins were identified in the venom of C. taeniatus. Moreover, several possibly biologically active peptide matches were identified, and putative applications of the peptides were assigned. Conclusion: Our study showed that the composition of the C. taeniatus-derived proteome is comparable to that of other Conus species and contains an effective mix of toxins, ionic channel inhibitors and antimicrobials. Additionally, it provides a guidepost for identifying novel conopeptides from the venom of C. taeniatus and discovering conopeptides of potential pharmaceutical importance.(AU)


Assuntos
Animais , Proteoma , Conotoxinas , Caramujo Conus , Venenos de Moluscos , Neurotoxinas , Produtos Biológicos
4.
J. venom. anim. toxins incl. trop. dis ; 26: e20190095, 2020. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135162

Resumo

Conopeptides are neuropharmacological peptides derived from the venomous salivary glands of cone snails. Among 29 superfamilies based on conserved signal sequences, T-superfamily conotoxins, which belong to the smallest group, include four different frameworks that contain four cysteines denominated I, V, X and XVI. In this work, the primary structure and the cysteine connectivity of novel conotoxin of Conus bandanus were determined by tandem mass spectrometry using collision-induced dissociation. Methods: The venom glands of C. bandanus snails were dissected, pooled, and extracted with 0.1% trifluoroacetic acid in three steps and lyophilized. The venom was fractionated and purified in an HPLC system with an analytical reversed-phase C18 column. The primary peptide structure was analyzed by MALDI TOF MS/MS using collision-induced dissociation and confirmed by Edman's degradation. The peptide's cysteine connectivity was determined by rapid partial reduction-alkylation technique. Results: The novel conotoxin, NGC1C2(I/L)VREC3C4, was firstly derived from de novo sequencing by MS/MS. The presence of isoleucine residues in this conotoxin was confirmed by the Edman degradation method. The conotoxin, denominated Bn5a, belongs to the T1-subfamily of conotoxins. However, the disulfide bonds (C1-C4/C2-C3) of Bn5a were not the same as found in other T1-subfamily conopeptides but shared common connectivities with T2-subfamily conotoxins. The T1-conotoxin of C. bandanus proved the complexity of the disulfide bond pattern of conopeptides. The homological analysis revealed that the novel conotoxin could serve as a valuable probe compound for the human-nervous-system norepinephrine transporter. Conclusion: We identified the first T1-conotoxin, denominated Bn5a, isolated from C. bandanus venom. However, Bn5a conotoxin exhibited unique C1-C4/C2-C3 disulfide connectivity, unlike other T1-conotoxins (C1-C3/C2-C4). The structural and homological analyses herein have evidenced novel conotoxin Bn5a that may require further investigation.(AU)


Assuntos
Animais , Peptídeos , Conotoxinas , Dissulfetos , Caramujo Conus , Glândulas Salivares
5.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20190095, May 8, 2020. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-29962

Resumo

Background: Conopeptides are neuropharmacological peptides derived from the venomous salivary glands of cone snails. Among 29 superfamilies based on conserved signal sequences, T-superfamily conotoxins, which belong to the smallest group, include four different frameworks that contain four cysteines denominated I, V, X and XVI. In this work, the primary structure and the cysteine connectivity of novel conotoxin of Conus bandanus were determined by tandem mass spectrometry using collision-induced dissociation. Methods: The venom glands of C. bandanus snails were dissected, pooled, and extracted with 0.1% trifluoroacetic acid in three steps and lyophilized. The venom was fractionated and purified in an HPLC system with an analytical reversed-phase C18 column. The primary peptide structure was analyzed by MALDI TOF MS/MS using collision-induced dissociation and confirmed by Edman's degradation. The peptides cysteine connectivity was determined by rapid partial reduction-alkylation technique. Results: The novel conotoxin, NGC1C2(I/L)VREC3C4, was firstly derived from de novo sequencing by MS/MS. The presence of isoleucine residues in this conotoxin was confirmed by the Edman degradation method. The conotoxin, denominated Bn5a, belongs to the T1-subfamily of conotoxins. However, the disulfide bonds (C1-C4/C2-C3) of Bn5a were not the same as found in other T1-subfamily conopeptides but shared common connectivities with T2-subfamily conotoxins. The T1-conotoxin of C. bandanus proved the complexity of the disulfide bond pattern of conopeptides. The homological analysis revealed that the novel conotoxin could serve as a valuable probe compound for the human-nervous-system norepinephrine transporter. Conclusion: We identified the first T1-conotoxin, denominated Bn5a, isolated from C. bandanus venom. However, Bn5a...(AU)


Assuntos
Animais , Venenos de Moluscos/análise , Venenos de Moluscos/química , Dissulfetos/análise , Conotoxinas/isolamento & purificação , Caramujo Conus/patogenicidade
6.
Ci. Rural ; 44(3): 501-509, mar. 2014. ilus
Artigo em Português | VETINDEX | ID: vti-760040

Resumo

O bloqueio dos canais para cálcio dependentes de voltagem é uma estratégia importante no tratamento do trauma medular, pois previne o influxo exacerbado do cálcio que participa ativamente em processos neurodegenerativos agudos, resultando em neuroproteção com melhora das funções neurológica. Dentre esses bloqueadores, as toxinas de caramujos marinhos são peptídeos com adequada estabilidade estrutural, estudadas pelas ações específicas em canais iônicos e receptores que interferem diretamente na liberação de neurotransmissores e na neuromodulação dos neurônios motores e sensitivos da medula espinal. Elas já são utilizadas no tratamento de desordens neurológicas e mostram-se promissoras no desenvolvimento de novas terapias para o trauma medular. Portanto, objetivou-se discorrer sobre a fisiopatologia do trauma medular e a possível utilização terapêutica das toxinas de caramujo marinho, atuantes nos principais canais para cálcio dependentes de voltagem.(AU)


Blocking voltage dependent calcium channels is an important strategy in acute spinal trauma treatment, because it prevents the exacerbated calcium influx which participates actively in acute neurodegenerative processes, resulting in neuroprotection with improvement of neurological and electrophysiological functions. The cone snail toxins are peptides with adequate structural stability, which have been studied by specific actions on ion channels and receptors that directly interfering in the release of neurotransmitters and neuromodulation of sensory and motor neurons of the spinal cord. They are already used in the treatment of neurological disorders and appear to be promising in the development of new therapies for spinal trauma. Therefore, it was aimed to discuss the pathophysiology of spinal cord trauma, and possible therapeutic use of marine snail toxins that acts in voltage-dependent calcium channels.(AU)


Assuntos
Conotoxinas/uso terapêutico , Canais de Cálcio , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Caramujo Conus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA