Resumo
Spider venoms induce different physio-pharmacological effects by binding with high affinity on molecular targets, therefore being of biotechnological interest. Some of these toxins, acting on different types of ion channels, have been identified in the venom of spiders of the genus Phoneutria, mainly from P. nigriventer. In spite of the pharmaceutical potential demonstrated by P. nigriventer toxins, there is limited information on molecules from venoms of the same genus, as their toxins remain poorly characterized. Understanding this diversity and clarifying the differences in the mechanisms of action of spider toxins is of great importance for establishing their true biotechnological potential. This prompted us to compare three different venoms of the Phoneutria genus: P. nigriventer (Pn-V), P. eickstedtae (Pe-V) and P. pertyi (Pp-V). Methods: Biochemical and functional comparison of the venoms were carried out by SDS-PAGE, HPLC, mass spectrometry, enzymatic activities and electrophysiological assays (whole-cell patch clamp). Results: The employed approach revealed that all three venoms had an overall similarity in their components, with only minor differences. The presence of a high number of similar proteins was evident, particularly toxins in the mass range of ~6.0 kDa. Hyaluronidase and proteolytic activities were detected in all venoms, in addition to isoforms of the toxins Tx1 and Tx2-6. All Tx1 isoforms blocked Nav1.6 ion currents, with slight differences. Conclusion: Our findings showed that Pn-V, Pe-V and Pp-V are highly similar concerning protein composition and enzymatic activities, containing isoforms of the same toxins sharing high sequence homology, with minor modifications. However, these structural and functional variations are very important for venom diversity. In addition, our findings will contribute to the comprehension of the molecular diversity of the venoms of the other species from Phoneutria genus, exposing their biotechnological potential as a source for searching for new active molecules.(AU)
Assuntos
Animais , Espectrometria de Massas/instrumentação , Venenos de Aranha/análise , Aranhas , Isoformas de Proteínas/biossíntese , Hialuronoglucosaminidase , Preparações FarmacêuticasResumo
Background:Crude venom of the banded tiger waspVespa affinis contains a variety of enzymes including hyaluronidases, commonly known as spreading factors.Methods:The cDNA cloning, sequence analysis and structural modelling of V. affinis venom hyaluronidase (VesA2) were herein described. Moreover, heterologous expression and mutagenesis of rVesA2 were performed.Results:V. affinis venom hyaluronidase full sequence is composed of 331 amino acids, with four predicted N-glycosylation sites. It was classified into the glycoside hydrolase family 56. The homology modelling exhibited a central core (α/β)7 composed of Asp107 and Glu109, acting as the catalytic residues. The recombinant protein was successfully expressed in E. coli with hyaluronidase activity. A recombinant mutant type with the double point mutation, Asp107Asn and Glu109Gln, completely lost this activity. The hyaluronidase from crude venom exhibited activity from pH 2 to 7. The recombinant wild type showed its maximal activity at pH 2 but decreased rapidly to nearly zero at pH 3 and was completely lost at pH 4.Conclusion:The recombinant wild-type protein showed its maximal activity at pH 2, more acidic pH than that found in the crude venom. The glycosylation was predicted to be responsible for the pH optimum and thermal stability of the enzymes activity.(AU)
Assuntos
Animais , Venenos de Vespas/química , Elementos Estruturais de Proteínas , Proteínas Recombinantes , HialuronoglucosaminidaseResumo
Background:Crude venom of the banded tiger waspVespa affinis contains a variety of enzymes including hyaluronidases, commonly known as spreading factors.Methods:The cDNA cloning, sequence analysis and structural modelling of V. affinis venom hyaluronidase (VesA2) were herein described. Moreover, heterologous expression and mutagenesis of rVesA2 were performed.Results:V. affinis venom hyaluronidase full sequence is composed of 331 amino acids, with four predicted N-glycosylation sites. It was classified into the glycoside hydrolase family 56. The homology modelling exhibited a central core (α/β)7 composed of Asp107 and Glu109, acting as the catalytic residues. The recombinant protein was successfully expressed in E. coli with hyaluronidase activity. A recombinant mutant type with the double point mutation, Asp107Asn and Glu109Gln, completely lost this activity. The hyaluronidase from crude venom exhibited activity from pH 2 to 7. The recombinant wild type showed its maximal activity at pH 2 but decreased rapidly to nearly zero at pH 3 and was completely lost at pH 4.Conclusion:The recombinant wild-type protein showed its maximal activity at pH 2, more acidic pH than that found in the crude venom. The glycosylation was predicted to be responsible for the pH optimum and thermal stability of the enzymes activity.
Assuntos
Animais , Elementos Estruturais de Proteínas , Hialuronoglucosaminidase , Proteínas Recombinantes , Venenos de Vespas/químicaResumo
Brown spiders are venomous arthropods that use their venom for predation and defense. In humans, bites of these animals provoke injuries including dermonecrosis with gravitational spread of lesions, hematological abnormalities and impaired renal function. The signs and symptoms observed following a brown spider bite are called loxoscelism. Brown spider venom is a complex mixture of toxins enriched in low molecular mass proteins (4-40 kDa). Characterization of the venom confirmed the presence of three highly expressed protein classes: phospholipases D, metalloproteases (astacins) and insecticidal peptides (knottins). Recently, toxins with low levels of expression have also been found in Loxosceles venom, such as serine proteases, protease inhibitors (serpins), hyaluronidases, allergen-like toxins and histamine-releasing factors. The toxin belonging to the phospholipase-D family (also known as the dermonecrotic toxin) is the most studied class of brown spider toxins. This class of toxins single-handedly can induce inflammatory response, dermonecrosis, hemolysis, thrombocytopenia and renal failure. The functional role of the hyaluronidase toxin as a spreading factor in loxoscelism has also been demonstrated. However, the biological characterization of other toxins remains unclear and the mechanism by which Loxosceles toxins exert their noxious effects is yet to be fully elucidated. The aim of this review is to provide an insight into brown spider venom toxins and toxicology, including a description of historical data already available in the literature. In this review article, the identification processes of novel Loxosceles toxins by molecular biology and proteomic approaches, their biological characterization and structural description based on x-ray crystallography and putative biotechnological uses are described along with the future perspectives in this field.(AU)
Assuntos
Animais , Venenos de Aranha , Fosfolipase D , Metaloproteases , Inseticidas , Hialuronoglucosaminidase , AranhasResumo
Background: Pasteurella multocida serotypes A and D are commonly associated with pneumonia and pleuritis in pigs. Different phenotypic techniques, such as hyaluronidase and acriflavine tests, and genotyping techniques, such as PCR, are used to distinguish between these serotypes. The objective of this study was to compare the capsular identification methods of type A and type D P. multocida isolated from pigs using both phenotypic (hyaluronidase and acriflavine tests) and genotypic (multiplex PCR) techniques. Materials, Methods & Results: A total of 44 lyophilized P. multocida isolates, obtained between 1981 and 1997 from pig farms at Rio Grande do Sul State, Brazil, were analyzed. The isolates were reactivated in Brain Heart Infusion (BHI) broth and cultured in BHI broth and blood agar supplemented with 5% sheep blood. Colony identity was further confirmed by evaluating colony morphology in blood agar and confirming the absence of growth on MacConkey agar. Bacteria in Tryptone Soy Agar (TSA) were used for the Triple Sugar Iron (TSI), Sulfide-Indole-Motility (SIM), and nitrate, glucose, lactose, sucrose and mannitol fermentation tests. For hyaluronidase test, P. multocida colonies were streaked transversally across the entire plate, approximately 3-5mm apart, in order to observe their lines of growth. Following this, a hyaluronidase producing strain of Staphylococcus aureus[...](AU)
Assuntos
Animais , Pasteurella multocida/isolamento & purificação , Hialuronoglucosaminidase/análise , Acriflavina/análise , Suínos/microbiologia , Reação em Cadeia da Polimerase Multiplex/veterináriaResumo
Background: Pasteurella multocida serotypes A and D are commonly associated with pneumonia and pleuritis in pigs. Different phenotypic techniques, such as hyaluronidase and acriflavine tests, and genotyping techniques, such as PCR, are used to distinguish between these serotypes. The objective of this study was to compare the capsular identification methods of type A and type D P. multocida isolated from pigs using both phenotypic (hyaluronidase and acriflavine tests) and genotypic (multiplex PCR) techniques. Materials, Methods & Results: A total of 44 lyophilized P. multocida isolates, obtained between 1981 and 1997 from pig farms at Rio Grande do Sul State, Brazil, were analyzed. The isolates were reactivated in Brain Heart Infusion (BHI) broth and cultured in BHI broth and blood agar supplemented with 5% sheep blood. Colony identity was further confirmed by evaluating colony morphology in blood agar and confirming the absence of growth on MacConkey agar. Bacteria in Tryptone Soy Agar (TSA) were used for the Triple Sugar Iron (TSI), Sulfide-Indole-Motility (SIM), and nitrate, glucose, lactose, sucrose and mannitol fermentation tests. For hyaluronidase test, P. multocida colonies were streaked transversally across the entire plate, approximately 3-5mm apart, in order to observe their lines of growth. Following this, a hyaluronidase producing strain of Staphylococcus aureus[...]
Assuntos
Animais , Acriflavina/análise , Hialuronoglucosaminidase/análise , Pasteurella multocida/isolamento & purificação , Suínos/microbiologia , Reação em Cadeia da Polimerase Multiplex/veterináriaResumo
Wasp venom is a complex mixture containing proteins, enzymes and small molecules, including some of the most dangerous allergens. The greater banded wasp (Vespa tropica) is well-known for its lethal venom, whose one of the major components is a hyaluronidase (HAase). It is believed that the high protein proportion and activity of this enzyme is responsible for the venom potency. Methods: In the present study, cDNA cloning, sequencing and 3D-structure of Vespa tropica venom HAase were described. Anti-native HAase antibody was used for neutralization assay. Results: Two isoforms, VesT2a and VesT2b, were classified as members of the glycosidase hydrolase 56 family with high similarity (4297 %) to the allergen venom HAase. VesT2a gene contained 1486 nucleotide residues encoding 357 amino acids whereas the VesT2b isoform consisted of 1411 residues encoding 356 amino acids. The mature VesT2a and VesT2b are similar in mass and pI after prediction. They are 39119.73 Da/pI 8.91 and 39571.5 Da/pI 9.38, respectively. Two catalytic residues in VesT2a, Asp107 and Glu109 were substituted in VesT2b by Asn, thus impeding enzymatic activity. The 3D-structure of the VesT2s isoform consisted of a central core (/)7 barrel and two disulfide bridges. The five putative glycosylation sites (Asn79, Asn99, Asn127, Asn187 and Asn325) of VesT2a and the three glycosylation sites (Asn1, Asn66 and Asn81) in VesT2b were predicted. An allergenic property significantly depends on the number of putative N-glycosylation sites. The anti-native HAase serum specifically recognized to venom HAase was able to neutralize toxicity of V. tropica venom. The ratio of venom antiserum was 1:12. Conclusions: The wasp venom allergy is known to cause life-threatening and fatal IgE-mediated anaphylactic reactions in allergic individuals. Structural analysis was a helpful tool for prediction of allergenic properties including their cross reactivity among the vespid HAase.(AU)
Assuntos
Animais , Venenos de Vespas/administração & dosagem , Venenos de Vespas/análise , Venenos de Vespas/toxicidade , Hialuronoglucosaminidase/análise , Hialuronoglucosaminidase/classificação , Hialuronoglucosaminidase/toxicidadeResumo
Wasp venom is a complex mixture containing proteins, enzymes and small molecules, including some of the most dangerous allergens. The greater banded wasp (Vespa tropica) is well-known for its lethal venom, whose one of the major components is a hyaluronidase (HAase). It is believed that the high protein proportion and activity of this enzyme is responsible for the venom potency. Methods: In the present study, cDNA cloning, sequencing and 3D-structure of Vespa tropica venom HAase were described. Anti-native HAase antibody was used for neutralization assay. Results: Two isoforms, VesT2a and VesT2b, were classified as members of the glycosidase hydrolase 56 family with high similarity (4297 %) to the allergen venom HAase. VesT2a gene contained 1486 nucleotide residues encoding 357 amino acids whereas the VesT2b isoform consisted of 1411 residues encoding 356 amino acids. The mature VesT2a and VesT2b are similar in mass and pI after prediction. They are 39119.73 Da/pI 8.91 and 39571.5 Da/pI 9.38, respectively. Two catalytic residues in VesT2a, Asp107 and Glu109 were substituted in VesT2b by Asn, thus impeding enzymatic activity. The 3D-structure of the VesT2s isoform consisted of a central core (/)7 barrel and two disulfide bridges. The five putative glycosylation sites (Asn79, Asn99, Asn127, Asn187 and Asn325) of VesT2a and the three glycosylation sites (Asn1, Asn66 and Asn81) in VesT2b were predicted. An allergenic property significantly depends on the number of putative N-glycosylation sites. The anti-native HAase serum specifically recognized to venom HAase was able to neutralize toxicity of V. tropica venom. The ratio of venom antiserum was 1:12. Conclusions: The wasp venom allergy is known to cause life-threatening and fatal IgE-mediated anaphylactic reactions in allergic individuals. Structural analysis was a helpful tool for prediction of allergenic properties including their cross reactivity among the vespid HAase.
Assuntos
Animais , Hialuronoglucosaminidase/análise , Hialuronoglucosaminidase/classificação , Hialuronoglucosaminidase/toxicidade , Venenos de Vespas/administração & dosagem , Venenos de Vespas/análise , Venenos de Vespas/toxicidadeResumo
Background: Wasp venom is a complex mixture containing proteins, enzymes and small molecules, including some of the most dangerous allergens. The greater banded wasp (Vespa tropica) is well-known for its lethal venom, whose one of the major components is a hyaluronidase (HAase). It is believed that the high protein proportion and activity of this enzyme is responsible for the venom potency. Methods: In the present study, cDNA cloning, sequencing and 3D-structure of Vespa tropica venom HAase were described. Anti-native HAase antibody was used for neutralization assay. Results: Two isoforms, VesT2a and VesT2b, were classified as members of the glycosidase hydrolase 56 family with high similarity (42-97 %) to the allergen venom HAase. VesT2a gene contained 1486 nucleotide residues encoding 357 amino acids whereas the VesT2b isoform consisted of 1411 residues encoding 356 amino acids. The mature VesT2a and VesT2b are similar in mass and pI after prediction. They are 39119.73 Da/pI 8.91 and 39571.5 Da/pI 9.38, respectively. Two catalytic residues in VesT2a, Asp107 and Glu109 were substituted in VesT2b by Asn, thus impeding enzymatic activity. The 3D-structure of the VesT2s isoform consisted of a central core (α/β)7 barrel and two disulfide bridges. The five putative glycosylation sites (Asn79, Asn99, Asn127, Asn187 and Asn325) of VesT2a and the three glycosylation sites (Asn1, Asn66 and Asn81) in VesT2b were predicted. An allergenic property significantly depends on the number of putative N-glycosylation sites. The anti-native HAase serum specifically recognized to venom HAase was able to neutralize toxicity of V. tropica venom. The ratio of venom antiserum was 1:12. Conclusions: The wasp venom allergy is known to cause life-threatening and fatal IgE-mediated anaphylactic reactions in allergic individuals. Structural analysis was a helpful tool for prediction of allergenic properties including their cross reactivity among the vespid HAase.(AU)
Assuntos
Animais , Venenos de Vespas , Vespas , Clonagem de Organismos , Glicosídeo Hidrolases , HialuronoglucosaminidaseResumo
The bitch has reproductive peculiarities that differentiate it from other species. Several experiments have been conducted to establish efficient protocols for maturation; however, the results appear to be unsatisfactory. In this respect, the reproductive female donor should be considered, since it can be a factor of variability of findings in this species. The objective of this study was to evaluate the relationship between the estrous cycle phases phase diestrus and anestrus on canine oocyte in vitro maturation (IVM). The ovaries were transported in sodium chloride 0.9% solution, and were cut into phosphate-buffered saline (PBS) and the cumulus-oocyte complexes (COCs) selected in tissue culture medium (TCM), supplemented with 199 HEPES. A total of 469 grade 1 oocytes were collected from bitches in anestrus and diestrus. These selected oocytes were transferred to the maturation medium for a period of 72 hours, then subjected to hyaluronidase solution and stained with Hoechst 33342 to assess nuclear configuration. The comparison of anestrus and diestrus phase showed no differences (p > 0.05) between the nuclear maturation stages. Thus, the phase of the estrous cycle did not influence the in vitro maturation of canine oocytes, increasing the rates of M-II in this species.(AU)
A cadela apresenta particularidades reprodutivas que a diferencia de outras espécies. Diversos experimentos têm sido realizados visando estabelecer protocolos eficientes para a maturação, entretanto os resultados mostram-se insatisfatórios. Nesse aspecto, a fase reprodutiva da fêmea doadora deve ser considerada, já que pode ser um fator de variabilidade dos achados ate então presenciados nessa espécie. O objetivo deste estudo foi avaliar a influencia das fases do ciclo estral (anestro e diestro) na maturação in vitro (MIV) de cadelas. Os ovários foram transportados em solução de cloreto de sódio 0,9% e seccionados em solução salina fosfato tamponado (PBS) e os complexos cumulus-oócito (COCs) selecionados em meio de cultura de tecidos (TCM) 199 suplementado com HEPES. Foram obtidos 469 oócitos grau 1 de cadelas em anestro e diestro. Esses oócitos selecionados foram transferidos para o meio de maturação por um período de 72 horas, sendo posteriormente submetidos a solução de hialuronidase e corados com HOESCHT 33342 para avaliação da configuração nuclear. A comparação das fases de anestro e diestro não revelou diferença (p > 0,05) entre os estágios de maturação nuclear. Dessa maneira, a fase do ciclo estral não influenciou na maturação in vitro de oócitos caninos, incrementando os índices de M-II nesta espécie.(AU)
Assuntos
Animais , Feminino , Cães , Ciclo Estral/fisiologia , Técnicas de Maturação in Vitro de Oócitos/veterinária , Fenômenos Reprodutivos Fisiológicos , Anestro , Estro , HialuronoglucosaminidaseResumo
Hyaluronidases are enzymes that mainly degrade hyaluronan, the major glycosaminoglycan of the interstitial matrix. They are involved in several pathological and physiological activities including fertilization, wound healing, embryogenesis, angiogenesis, diffusion of toxins and drugs, metastasis, pneumonia, sepsis, bacteremia, meningitis, inflammation and allergy, among others. Hyaluronidases are widely distributed in nature and the enzymes from mammalian spermatozoa, lysosomes and animal venoms belong to the subclass EC 3.2.1.35. To date, only five three-dimensional structures for arthropod venom hyaluronidases (Apis mellifera and Vespula vulgaris) were determined. Additionally, there are four molecular models for hyaluronidases fromMesobuthus martensii, Polybia paulista and Tityus serrulatus venoms. These enzymes are employed as adjuvants to increase the absorption and dispersion of other drugs and have been used in various off-label clinical conditions to reduce tissue edema. Moreover, a PEGylated form of a recombinant human hyaluronidase is currently under clinical trials for the treatment of metastatic pancreatic cancer. This review focuses on the arthropod venom hyaluronidases and provides an overview of their biochemical properties, role in the envenoming, structure/activity relationship, and potential medical and biotechnological applications.(AU)
Assuntos
Animais , Venenos de Artrópodes/análise , Venenos de Artrópodes/uso terapêutico , Animais Peçonhentos , HialuronoglucosaminidaseResumo
Hyaluronidases are enzymes that mainly degrade hyaluronan, the major glycosaminoglycan of the interstitial matrix. They are involved in several pathological and physiological activities including fertilization, wound healing, embryogenesis, angiogenesis, diffusion of toxins and drugs, metastasis, pneumonia, sepsis, bacteremia, meningitis, inflammation and allergy, among others. Hyaluronidases are widely distributed in nature and the enzymes from mammalian spermatozoa, lysosomes and animal venoms belong to the subclass EC 3.2.1.35. To date, only five three-dimensional structures for arthropod venom hyaluronidases (Apis mellifera and Vespula vulgaris) were determined. Additionally, there are four molecular models for hyaluronidases fromMesobuthus martensii, Polybia paulista and Tityus serrulatus venoms. These enzymes are employed as adjuvants to increase the absorption and dispersion of other drugs and have been used in various off-label clinical conditions to reduce tissue edema. Moreover, a PEGylated form of a recombinant human hyaluronidase is currently under clinical trials for the treatment of metastatic pancreatic cancer. This review focuses on the arthropod venom hyaluronidases and provides an overview of their biochemical properties, role in the envenoming, structure/activity relationship, and potential medical and biotechnological applications.
Assuntos
Animais , Animais Peçonhentos , Hialuronoglucosaminidase , Venenos de Artrópodes/análise , Venenos de Artrópodes/uso terapêuticoResumo
Background Hyaluronate is one of the major components of extracellular matrix from vertebrates whose breakdown is catalyzed by the enzyme hyaluronidase. These enzymes are widely described in snake venoms, in which they facilitate the spreading of the main toxins in the victim's body during the envenoming. Snake venoms also present some variants (hyaluronidases-like substances) that are probably originated by alternative splicing, even though their relevance in envenomation is still under investigation. Hyaluronidases-like proteins have not yet been purified from any snake venom, but the cDNA that encodes these toxins was already identified in snake venom glands by transcriptomic analysis. Herein, we report the cloning and in silicoanalysis of the first hyaluronidase-like proteins from a Brazilian snake venom.Methods The cDNA sequence of hyaluronidase was cloned from the transcriptome of Bothrops pauloensisvenom glands. This sequence was submitted to multiple alignment with other related sequences by ClustalW. A phylogenetic analysis was performed using MEGA 4 software by the neighbor joining (NJ) method.Results The cDNA from Bothrops pauloensis venom gland that corresponds to hyaluronidase comprises 1175 bp and codifies a protein containing 194 amino acid residues. The sequence, denominated BpHyase, was identified as hyaluronidase-like since it shows high sequence identities (above 83%) with other described snake venom hyaluronidase-like sequences. Hyaluronidases-like proteins are thought to be products of alternative splicing implicated in deletions of central amino acids, including the catalytic residues. Structure-based sequence alignment of BpHyase to human hyaluronidase hHyal-1 demonstrates a loss of some key secondary structures. The phylogenetic analysis indicates an independent evolution of BpHyal when compared to other hyaluronidases. However, these toxins might share a common ancestor, thus suggesting a broad hyaluronidase-like distribution among venomous snakes.Conclusions This work is the first report of a cDNA sequence of hyaluronidase from Brazilian snake venoms. Moreover, the in silico analysis of its deduced amino acid sequence opens new perspectives about the biological function of hyaluronidases-like proteins and may direct further studies comprising their isolation and/or recombinant production, as well as their structural and functional characterization.(AU)
Assuntos
Animais , Filogenia , Venenos de Serpentes , Clonagem Molecular , Bothrops , HialuronoglucosaminidaseResumo
Hyaluronate is one of the major components of extracellular matrix from vertebrates whose breakdown is catalyzed by the enzyme hyaluronidase. These enzymes are widely described in snake venoms, in which they facilitate the spreading of the main toxins in the victims body during the envenoming. Snake venoms also present some variants (hyaluronidases-like substances) that are probably originated by alternative splicing, even though their relevance in envenomation is still under investigation. Hyaluronidases-like proteins have not yet been purified from any snake venom, but the cDNA that encodes these toxins was already identified in snake venom glands by transcriptomic analysis. Herein, we report the cloning and in silico analysis of the first hyaluronidase-like proteins from a Brazilian snake venom.(AU)
Assuntos
Animais , Clonagem Molecular/métodos , Venenos de Víboras , Hialuronoglucosaminidase/análiseResumo
Venom hyaluronidase (Hyase) contributes to the diffusion of venom from the inoculation site. In this work, we purified and characterized Hyase from the venom of Vitalius dubius (Araneae, Theraphosidae), a large theraphosid found in southeastern Brazil. Venom obtained by electrical stimulation of adult male and female V. dubius was initially fractionated by gel filtration on a Superdex® 75 column. Active fractions were pooled and applied to a heparin-sepharose affinity column. The proteins were eluted with a linear NaCl gradient.(AU)
Assuntos
Animais , Hialuronoglucosaminidase/análise , Venenos/administração & dosagem , Aranhas/classificaçãoResumo
Hyaluronate is one of the major components of extracellular matrix from vertebrates whose breakdown is catalyzed by the enzyme hyaluronidase. These enzymes are widely described in snake venoms, in which they facilitate the spreading of the main toxins in the victims body during the envenoming. Snake venoms also present some variants (hyaluronidases-like substances) that are probably originated by alternative splicing, even though their relevance in envenomation is still under investigation. Hyaluronidases-like proteins have not yet been purified from any snake venom, but the cDNA that encodes these toxins was already identified in snake venom glands by transcriptomic analysis. Herein, we report the cloning and in silico analysis of the first hyaluronidase-like proteins from a Brazilian snake venom.
Assuntos
Animais , Clonagem Molecular/métodos , Hialuronoglucosaminidase/análise , Venenos de VíborasResumo
Os efeitos das enzimas hialuronidase e tripsina foram avaliados quanto à liquefação, motilidade, vigor e integridade do acrossoma, no sêmen de seis macacos pregos (Cebus apeiia), mantidos na Fundação Parque Zoológico de São Paulo. O sêmen foi colhido por eletroejaculação, após anestesia geral, e a fração líquida foi imediatamente avaliada. A fração coagulada do sêmen foi tratada com as enzimas hialuronidase e tripsina, na dose de 1mg/ml, diluídas em meio 199 (Nutricel, Campinas/SP, Brasil), na proporção 1:4 e examinada após 5 e 15 minutos. Test t de Student foi utilizado para comparar os tratamentos. Não houve diferença significativa quanto a motilidade, vigor e integridade de acrossoma (p > 0.05), entre a fração de sêmen coagulado diluído em hialuronidase e tripsina, após cinco ou quinze minutos. No entanto, houve diferença significativa quanto a motilidade e vigor entre a fração líquida e a coagulada do sêmen (p < 0.05), após quinze minutos. Não houve diferença significativa com relação à integridade de acrossoma (p > 0.05) entre a fração líquida e coagulada do sêmen, após 15 minutos. De acordo com os resultados, podemos concluir que não houve efeito aparente na fração coagulada do sêmen tratado com as enzimas hialuronidase e tripsina com relação a motilidade, vigor e integridade do acrossoma. No entanto, houve diferença significativa entre a fração líquida e coagulada do sêmen com relação a motilidade e vigor, porém não quanto à integridade do acrossoma. De maneira geral, em ambos os tratamentos, não houve a completa dissolução do coágulo.(AU)
The effect of the enzymes hyaluronidase and trypsin were recorded on the motility, vigor and acrosome integrity in the semen of capuchin monkey (Cebus apella). The animals (n=6) were maintained at Fundação Parque Zoológico de São Paulo. Under anesthesia semen samples were collected by electroejaculation. Immediately after the ejaculation, the semen liquid fraction was analyzed for volume (ml), pH, motility (%), vigor (0-5), concentration (cells/ml), defects (%) and percentage of intact acrosome (%). The coagulated fraction was treated with a solution of hyaluronidase or trypsin, 1mg/ml in commercial medium (199-Nutricel, Campinas/SP, Brazil) in a proportion of 1:4 and the samples were examined after 5 and 15 minutes. The Student T Test (95%) was used to compare the treatments. There was no significant difference in the motility, vigor or acrossome integrity (p > 0.05) between coagulated fraction diluted either in trypsin or in hyaluronidase, after 5 or 15 minutes. However, there was significant difference in motility and vigor between liquid and coagulated fraction, after 15 minutes, for both treatments (p<0.05), but there were no difference in acrosome integrity (p > 0.05). In conclusion, there were no apparent effects in the coagulum for both treatments regarding motility, vigor and acrosome integrity. There were significant differences between liquid and coagulated fractions regarding motility and vigor, but not for acrosome integrity. In both enzyme treatments there were no complete dissolution of the coagulum.(AU)