Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J. venom. anim. toxins incl. trop. dis ; 28: e20210017, 2022. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1365075

Resumo

Background: Acylpolyamines are one of the main non-peptide compounds present in spider venom and represent a promising alternative in the search for new molecules with antimicrobial action. Methods: The venom of Acanthoscurria natalensis spider was fractionated by reverse-phase liquid chromatography (RP-HPLC) and the antimicrobial activity of the fractions was tested using a liquid growth inhibition assay. The main antimicrobial fraction containing acylpolyamines (ApAn) was submitted to two additional chromatographic steps and analyzed by MALDI-TOF. Fractions of interest were accumulated for ultraviolet (UV) spectroscopy and ESI-MS/MS analysis and for minimum inhibitory concentration (MIC) and hemolytic activity determination. Results: Five acylpolyamines were isolated from the venom with molecular masses between 614 Da and 756 Da, being named ApAn728, ApAn614a, ApAn614b, ApAn742 and ApAn756. The analysis of UV absorption profile of each ApAn and the fragmentation pattern obtained by ESI-MS/MS suggested the presence of a tyrosyl unit as chromophore and a terminal polyamine chain consistent with structural units PA43 or PA53. ApAn presented MIC between 128 µM and 256 µM against Escherichia coli and Staphylococcus aureus, without causing hemolysis against mouse erythrocytes. Conclusion: The antimicrobial and non-hemolytic properties of the analyzed ApAn may be relevant for their application as possible therapeutic agents and the identification of an unconventional chromophore for spider acylpolyamines suggests an even greater chemical diversity.(AU)


Assuntos
Animais , Venenos de Aranha/toxicidade , Staphylococcus aureus , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Escherichia coli , Anti-Infecciosos
2.
J. venom. anim. toxins incl. trop. dis ; 27: e20200188, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1279408

Resumo

Accidents caused by the bites of brown spiders (Loxosceles) generate a clinical condition that often includes a threatening necrotic skin lesion near the bite site along with a remarkable inflammatory response. Systemic disorders such as hemolysis, thrombocytopenia, and acute renal failure may occur, but are much less frequent than the local damage. It is already known that phospholipases D, highly expressed toxins in Loxosceles venom, can induce most of these injuries. However, this spider venom has a great range of toxins that probably act synergistically to enhance toxicity. The other protein classes remain poorly explored due to the difficulty in obtaining sufficient amounts of them for a thorough investigation. They include astacins (metalloproteases), serine proteases, knottins, translationally controlled tumor proteins (TCTP), hyaluronidases, allergens and serpins. It has already been shown that some of them, according to their characteristics, may participate to some extent in the development of loxoscelism. In addition, all of these toxins present potential application in several areas. The present review article summarizes information regarding some functional aspects of the protein classes listed above, discusses the directions that could be taken to materialize a comprehensive investigation on each of these toxins as well as highlights the importance of exploring the full venom repertoire.(AU)


Assuntos
Animais , Venenos de Aranha/toxicidade , Aranhas , Serpinas , Serina Proteases , Mordeduras e Picadas
3.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200188, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31959

Resumo

Accidents caused by the bites of brown spiders (Loxosceles) generate a clinical condition that often includes a threatening necrotic skin lesion near the bite site along with a remarkable inflammatory response. Systemic disorders such as hemolysis, thrombocytopenia, and acute renal failure may occur, but are much less frequent than the local damage. It is already known that phospholipases D, highly expressed toxins in Loxosceles venom, can induce most of these injuries. However, this spider venom has a great range of toxins that probably act synergistically to enhance toxicity. The other protein classes remain poorly explored due to the difficulty in obtaining sufficient amounts of them for a thorough investigation. They include astacins (metalloproteases), serine proteases, knottins, translationally controlled tumor proteins (TCTP), hyaluronidases, allergens and serpins. It has already been shown that some of them, according to their characteristics, may participate to some extent in the development of loxoscelism. In addition, all of these toxins present potential application in several areas. The present review article summarizes information regarding some functional aspects of the protein classes listed above, discusses the directions that could be taken to materialize a comprehensive investigation on each of these toxins as well as highlights the importance of exploring the full venom repertoire.(AU)


Assuntos
Animais , Venenos de Aranha/toxicidade , Aranhas , Serpinas , Serina Proteases , Mordeduras e Picadas
4.
J. venom. anim. toxins incl. trop. dis ; 27: e20210009, 2021. tab, graf, ilus, mapas
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1279406

Resumo

Spider venom is a rich cocktail of neuroactive compounds designed to prey capture and defense against predators that act on neuronal membrane proteins, in particular, acetylcholinesterases (AChE) that regulate synaptic transmission through acetylcholine (ACh) hydrolysis - an excitatory neurotransmitter - and beta-secretases (BACE) that primarily cleave amyloid precursor proteins (APP), which are, in turn, relevant in the structural integrity of neurons. The present study provides preliminary evidence on the therapeutic potential of Phlogiellus bundokalbo venom against neurodegenerative diseases. Methods Spider venom was extracted by electrostimulation and fractionated by reverse-phase high-performance liquid chromatography (RP-HPLC) and characterized by matrix-assisted laser desorption ionization-time flight mass spectrometry (MALDI-TOF-MS). Neuroactivity of the whole venom was observed by a neurobehavioral response from Terebrio molitor larvae in vivo and fractions were screened for their inhibitory activities against AChE and BACE in vitro. Results The whole venom from P. bundokalbo demonstrated neuroactivity by inducing excitatory movements from T. molitor for 15 min. Sixteen fractions collected produced diverse mass fragments from MALDI-TOF-MS ranging from 900-4500 Da. Eleven of sixteen fractions demonstrated AChE inhibitory activities with 14.34% (± 2.60e-4) to 62.05% (± 6.40e-5) compared with donepezil which has 86.34% (± 3.90e-5) inhibition (p > 0.05), while none of the fractions were observed to exhibit BACE inhibition. Furthermore, three potent fractions against AChE, F1, F3, and F16 displayed competitive and uncompetitive inhibitions compared to donepezil as the positive control. Conclusion The venom of P. bundokalbo contains compounds that demonstrate neuroactivity and anti-AChE activities in vitro, which could comprise possible therapeutic leads for the development of cholinergic compounds against neurological diseases.(AU)


Assuntos
Animais , Acetilcolinesterase , Venenos de Aranha/toxicidade , Neurotransmissores , Doenças Neurodegenerativas , Técnicas In Vitro
5.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20210009, 2021. tab, graf, ilus, mapas
Artigo em Inglês | VETINDEX | ID: vti-31950

Resumo

Spider venom is a rich cocktail of neuroactive compounds designed to prey capture and defense against predators that act on neuronal membrane proteins, in particular, acetylcholinesterases (AChE) that regulate synaptic transmission through acetylcholine (ACh) hydrolysis - an excitatory neurotransmitter - and beta-secretases (BACE) that primarily cleave amyloid precursor proteins (APP), which are, in turn, relevant in the structural integrity of neurons. The present study provides preliminary evidence on the therapeutic potential of Phlogiellus bundokalbo venom against neurodegenerative diseases. Methods Spider venom was extracted by electrostimulation and fractionated by reverse-phase high-performance liquid chromatography (RP-HPLC) and characterized by matrix-assisted laser desorption ionization-time flight mass spectrometry (MALDI-TOF-MS). Neuroactivity of the whole venom was observed by a neurobehavioral response from Terebrio molitor larvae in vivo and fractions were screened for their inhibitory activities against AChE and BACE in vitro. Results The whole venom from P. bundokalbo demonstrated neuroactivity by inducing excitatory movements from T. molitor for 15 min. Sixteen fractions collected produced diverse mass fragments from MALDI-TOF-MS ranging from 900-4500 Da. Eleven of sixteen fractions demonstrated AChE inhibitory activities with 14.34% (± 2.60e-4) to 62.05% (± 6.40e-5) compared with donepezil which has 86.34% (± 3.90e-5) inhibition (p > 0.05), while none of the fractions were observed to exhibit BACE inhibition. Furthermore, three potent fractions against AChE, F1, F3, and F16 displayed competitive and uncompetitive inhibitions compared to donepezil as the positive control. Conclusion The venom of P. bundokalbo contains compounds that demonstrate neuroactivity and anti-AChE activities in vitro, which could comprise possible therapeutic leads for the development of cholinergic compounds against neurological diseases.(AU)


Assuntos
Animais , Acetilcolinesterase , Venenos de Aranha/toxicidade , Neurotransmissores , Doenças Neurodegenerativas , Técnicas In Vitro
6.
J. venom. anim. toxins incl. trop. dis ; 27: e20210011, 2021. tab, graf, mapas, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1346438

Resumo

Humankind has always been fascinated by venomous animals, as their toxic substances have transformed them into symbols of power and mystery. Over the centuries, researchers have been trying to understand animal venoms, unveiling intricate mixtures of molecules and their biological effects. Among venomous animals, Latrodectus Walckenaer, 1805 (widow spiders) have become feared in many cultures worldwide due to their extremely neurotoxic venom. The Latrodectus genus encompasses 32 species broadly spread around the globe, 14 of which occur in the Americas. Despite the high number of species found in the New World, the knowledge on these spiders is still scarce. This review covers the general knowledge on Latrodectus spp. from the Americas. We address widow spiders' taxonomy; geographical distribution and epidemiology; symptoms and treatments of envenomation (latrodectism); venom collection, experimental studies, proteome and transcriptome; and biotechnological studies on these Latrodectus spp. Moreover, we discuss the main challenges and limitations faced by researchers when trying to comprehend this neglected group of medically important spiders. We expect this review to help overcome the lack of information regarding widow spiders in the New World.(AU)


Assuntos
Animais , Venenos de Aranha/toxicidade , Aranhas , Viúva Negra , Agentes Neurotóxicos
7.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20210011, 2021. tab, graf, mapas, ilus
Artigo em Inglês | VETINDEX | ID: vti-32624

Resumo

Humankind has always been fascinated by venomous animals, as their toxic substances have transformed them into symbols of power and mystery. Over the centuries, researchers have been trying to understand animal venoms, unveiling intricate mixtures of molecules and their biological effects. Among venomous animals, Latrodectus Walckenaer, 1805 (widow spiders) have become feared in many cultures worldwide due to their extremely neurotoxic venom. The Latrodectus genus encompasses 32 species broadly spread around the globe, 14 of which occur in the Americas. Despite the high number of species found in the New World, the knowledge on these spiders is still scarce. This review covers the general knowledge on Latrodectus spp. from the Americas. We address widow spiders' taxonomy; geographical distribution and epidemiology; symptoms and treatments of envenomation (latrodectism); venom collection, experimental studies, proteome and transcriptome; and biotechnological studies on these Latrodectus spp. Moreover, we discuss the main challenges and limitations faced by researchers when trying to comprehend this neglected group of medically important spiders. We expect this review to help overcome the lack of information regarding widow spiders in the New World.(AU)


Assuntos
Animais , Venenos de Aranha/toxicidade , Aranhas , Viúva Negra , Agentes Neurotóxicos
8.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20190104, 2020. graf
Artigo em Inglês | VETINDEX | ID: vti-32313

Resumo

Spider venom is a potential source of pharmacologically important compounds. Previous studies on spider venoms reported the presence of bioactive molecules that possess cell-modulating activities. Despite these claims, sparse scientific evidence is available on the cytotoxic mechanisms in relation to the components of the spider venom. In this study, we aimed to determine the cytotoxic fractions of the spider venom extracted from Phlogiellus bundokalbo and to ascertain the possible mechanism of toxicity towards human lung adenocarcinoma (A549) cells. Methods: Spider venom was extracted by electrostimulation. Components of the extracted venom were separated by reversed-phase high performance liquid chromatography (RP-HPLC) using a linear gradient of 0.1% trifluoroacetic acid (TFA) in water and 0.1% TFA in 95% acetonitrile (ACN). Cytotoxic activity was evaluated by the MTT assay. Apoptotic or necrotic cell death was assessed by microscopic evaluation in the presence of Hoechst 33342 and Annexin V, Alexa FluorTM 488 conjugate fluorescent stains, and caspase activation assay. Phospholipase A2 (PLA2) activity of the cytotoxic fractions were also measured. Results: We observed and isolated six fractions from the venom of P. bundokalbo collected from Aurora, Zamboanga del Sur. Four of these fractions displayed cytotoxic activities. Fractions AT5-1, AT5-3, and AT5-4 were found to be apoptotic while AT5-6, the least polar among the cytotoxic components, was observed to induce necrosis. PLA2 activity also showed cytotoxicity in all fractions but presented no relationship between specific activity of PLA2 and cytotoxicity. Conclusion: The venom of P. bundokalbo spider, an endemic tarantula species in the Philippines, contains components that were able to induce either apoptosis or necrosis in A549 cells.(AU)


Assuntos
Animais , Venenos de Aranha/análise , Venenos de Aranha/toxicidade , Aranhas/citologia , Adenocarcinoma de Pulmão , Citotoxicidade Imunológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA