Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Braz. j. biol ; 832023.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469090

Resumo

Abstract Thimerosal is an organomercurial compound, which is used in the preparation of intramuscular immunoglobulin, antivenoms, tattoo inks, skin test antigens, nasal products, ophthalmic drops, and vaccines as a preservative. In most of animal species and humans, the kidney is one of the main sites for mercurial compounds deposition and target organs for toxicity. So, the current research was intended to assess the thimerosal induced nephrotoxicity in male rats. Twenty-four adult male albino rats were categorized into four groups. The first group was a control group. Rats of Group-II, Group-III, and Group-IV were administered with 0.5µg/kg, 10µg/kg, and 50µg/kg of thimerosal once a day, respectively. Thimerosal administration significantly decreased the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), glutathione (GSH), and protein content while increased the thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) levels dose-dependently. Blood urea nitrogen (BUN), creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, urinary albumin and creatinine clearance was reduced dose-dependently in thimerosal treated groups. The results demonstrated that thimerosal significantly increased the inflammation indicators including nuclear factor kappaB (NF-B), tumor necrosis factor- (TNF-), Interleukin-1 (IL-1), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activities, DNA and histopathological damages dose-dependently. So, the present findings ascertained that thimerosal exerted nephrotoxicity in male albino rats.


Resumo O timerosal é um composto organomercurial, utilizado na preparação de imunoglobulina intramuscular, antivenenos, tintas de tatuagem, antígenos de teste cutâneo, produtos nasais, gotas oftálmicas e vacinas como conservante. Na maioria das espécies animais e nos humanos, o rim é um dos principais locais de deposição de compostos de mercúrio e órgãos-alvo de toxicidade. Assim, a presente pesquisa teve como objetivo avaliar a nefrotoxicidade induzida pelo timerosal em ratos machos. Vinte e quatro ratos albinos machos adultos foram categorizados em quatro grupos. O primeiro grupo era um grupo de controle. Ratos do Grupo II, Grupo III e Grupo IV receberam 0,5µg / kg, 10µg / kg e 50µg / kg de timerosal uma vez ao dia, respectivamente. A administração de timerosal diminuiu significativamente as atividades de catalase (CAT), superóxido dismutase (SOD), peroxidase (POD), glutationa redutase (GR), glutationa (GSH) e conteúdo de proteína, enquanto aumentou as substâncias reativas ao ácido tiobarbitúrico (TBARS) e peróxido de hidrogênio (H2O2) níveis dependentes da dose. Os níveis de nitrogênio ureico no sangue (BUN), creatinina, urobilinogênio, proteínas urinárias, molécula de lesão renal-1 (KIM-1) e lipocalina associada à gelatinase de neutrófilos (NGAL) aumentaram substancialmente. Em contraste, a albumina urinária e a depuração da creatinina foram reduzidas de forma dependente da dose nos grupos tratados com timerosal. Os resultados demonstraram que o timerosal aumentou significativamente os indicadores de inflamação, incluindo fator nuclear kappaB (NF-B), fator de necrose tumoral- (TNF-), interleucina-1 (IL-1), níveis de interleucina-6 (IL-6) e atividades da ciclooxigenase-2 (COX-2), DNA e danos histopatológicos dependentes da dose. Portanto, os presentes achados verificaram que o timerosal exerceu nefrotoxicidade em ratos albinos machos.

2.
J. venom. anim. toxins incl. trop. dis ; 29: e20220077, 2023. tab, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1418312

Resumo

Background: Bivalent freeze-dried neurotoxic (FN) antivenom has been the primary treatment since the 1980s for Taiwan cobra (Naja atra) envenomation in Taiwan. However, envenomation-related wound necrosis is a significant problem after cobra snakebites. In the present study, we analyzed the changes in serum venom concentration before and after antivenom administration to discover their clinical implications and the surgical treatment options for wound necrosis. Methods: The patients were divided into limb swelling and wound necrosis groups. The clinical outcome was that swelling started to subside 12 hours after antivenom treatment in the first group. Serum venom concentrations before and after using antivenoms were measured to assess the antivenom's ability to neutralize the circulating cobra venom. The venom levels in wound wet dressing gauzes, blister fluids, and debrided tissues were also investigated to determine their clinical significance. We also observed the evolutional changes of wound necrosis and chose a better wound debridement timing. Results: We prospectively enrolled 15 Taiwan cobra snakebite patients. Males accounted for most of this study population (n = 11, 73%). The wound necrosis group received more antivenom doses than the limb swelling group (4; IQR:2-6 vs 1; IQR:1-2, p = 0.05), and less records of serum venom concentrations changed before/after antivenom use (p = 0.0079). The necrotic wound site may release venom into circulation and cause more severe envenomation symptoms. Antivenom can efficiently diminish limb swelling in cobra bite patients. However, antivenom cannot reduce wound necrosis. Patients with early debridement of wound necrosis had a better limb outcome, while late or without debridement may have long-term hospital stay and distal limb morbidity. Conclusions: Antivenom can efficiently eliminate the circulating cobra venom in limb swelling patients without wound necrosis. Early debridement of the bite site wound and wet dressing management are suggestions for preventing extended tissue necrosis and hospital stay.(AU)


Assuntos
Animais , Mordeduras de Serpentes/terapia , Agentes Neurotóxicos/efeitos adversos , Taiwan , Necrose/terapia
3.
Braz. j. biol ; 83: 1-9, 2023. graf, ilus, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468874

Resumo

Thimerosal is an organomercurial compound, which is used in the preparation of intramuscular immunoglobulin, antivenoms, tattoo inks, skin test antigens, nasal products, ophthalmic drops, and vaccines as a preservative. In most of animal species and humans, the kidney is one of the main sites for mercurial compounds deposition and target organs for toxicity. So, the current research was intended to assess the thimerosal induced nephrotoxicity in male rats. Twenty-four adult male albino rats were categorized into four groups. The first group was a control group. Rats of Group-II, Group-III, and Group-IV were administered with 0.5µg/kg, 10µg/kg, and 50µg/kg of thimerosal once a day, respectively. Thimerosal administration significantly decreased the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), glutathione (GSH), and protein content while increased the thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) levels dose-dependently. Blood urea nitrogen (BUN), creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, urinary albumin and creatinine clearance was reduced dose-dependently in thimerosal treated groups. The results demonstrated that thimerosal significantly increased the inflammation indicators including nuclear factor kappaB (NF-κB), tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activities, DNA and histopathological damages dose-dependently. So, the present findings ascertained that thimerosal exerted nephrotoxicity in male albino rats.


O timerosal é um composto organomercurial, utilizado na preparação de imunoglobulina intramuscular, antivenenos, tintas de tatuagem, antígenos de teste cutâneo, produtos nasais, gotas oftálmicas e vacinas como conservante. Na maioria das espécies animais e nos humanos, o rim é um dos principais locais de deposição de compostos de mercúrio e órgãos-alvo de toxicidade. Assim, a presente pesquisa teve como objetivo avaliar a nefrotoxicidade induzida pelo timerosal em ratos machos. Vinte e quatro ratos albinos machos adultos foram categorizados em quatro grupos. O primeiro grupo era um grupo de controle. Ratos do Grupo II, Grupo III e Grupo IV receberam 0,5µg / kg, 10µg / kg e 50µg / kg de timerosal uma vez ao dia, respectivamente. A administração de timerosal diminuiu significativamente as atividades de catalase (CAT), superóxido dismutase (SOD), peroxidase (POD), glutationa redutase (GR), glutationa (GSH) e conteúdo de proteína, enquanto aumentou as substâncias reativas ao ácido tiobarbitúrico (TBARS) e peróxido de hidrogênio (H2O2) níveis dependentes da dose. Os níveis de nitrogênio ureico no sangue (BUN), creatinina, urobilinogênio, proteínas urinárias, molécula de lesão renal-1 (KIM-1) e lipocalina associada à gelatinase de neutrófilos (NGAL) aumentaram substancialmente. Em contraste, a albumina urinária e a depuração da creatinina foram reduzidas de forma dependente da dose nos grupos tratados com timerosal. Os resultados demonstraram que o timerosal aumentou significativamente os indicadores de inflamação, incluindo fator nuclear kappaB (NF-κB), fator de necrose tumoral-α (TNF-α), interleucina-1β (IL-1β), níveis de interleucina-6 (IL-6) e atividades da ciclooxigenase-2 (COX-2), DNA e danos histopatológicos dependentes da dose. Portanto, os presentes achados verificaram que o timerosal exerceu nefrotoxicidade em ratos albinos machos.


Assuntos
Masculino , Animais , Ratos , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Timerosal/efeitos adversos , Timerosal/toxicidade , Ratos Wistar
4.
Braz. J. Biol. ; 83: 1-9, 2023. graf, ilus, tab
Artigo em Inglês | VETINDEX | ID: vti-765451

Resumo

Thimerosal is an organomercurial compound, which is used in the preparation of intramuscular immunoglobulin, antivenoms, tattoo inks, skin test antigens, nasal products, ophthalmic drops, and vaccines as a preservative. In most of animal species and humans, the kidney is one of the main sites for mercurial compounds deposition and target organs for toxicity. So, the current research was intended to assess the thimerosal induced nephrotoxicity in male rats. Twenty-four adult male albino rats were categorized into four groups. The first group was a control group. Rats of Group-II, Group-III, and Group-IV were administered with 0.5µg/kg, 10µg/kg, and 50µg/kg of thimerosal once a day, respectively. Thimerosal administration significantly decreased the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), glutathione (GSH), and protein content while increased the thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) levels dose-dependently. Blood urea nitrogen (BUN), creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, urinary albumin and creatinine clearance was reduced dose-dependently in thimerosal treated groups. The results demonstrated that thimerosal significantly increased the inflammation indicators including nuclear factor kappaB (NF-κB), tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activities, DNA and histopathological damages dose-dependently. So, the present findings ascertained that thimerosal exerted nephrotoxicity in male albino rats.(AU)


O timerosal é um composto organomercurial, utilizado na preparação de imunoglobulina intramuscular, antivenenos, tintas de tatuagem, antígenos de teste cutâneo, produtos nasais, gotas oftálmicas e vacinas como conservante. Na maioria das espécies animais e nos humanos, o rim é um dos principais locais de deposição de compostos de mercúrio e órgãos-alvo de toxicidade. Assim, a presente pesquisa teve como objetivo avaliar a nefrotoxicidade induzida pelo timerosal em ratos machos. Vinte e quatro ratos albinos machos adultos foram categorizados em quatro grupos. O primeiro grupo era um grupo de controle. Ratos do Grupo II, Grupo III e Grupo IV receberam 0,5µg / kg, 10µg / kg e 50µg / kg de timerosal uma vez ao dia, respectivamente. A administração de timerosal diminuiu significativamente as atividades de catalase (CAT), superóxido dismutase (SOD), peroxidase (POD), glutationa redutase (GR), glutationa (GSH) e conteúdo de proteína, enquanto aumentou as substâncias reativas ao ácido tiobarbitúrico (TBARS) e peróxido de hidrogênio (H2O2) níveis dependentes da dose. Os níveis de nitrogênio ureico no sangue (BUN), creatinina, urobilinogênio, proteínas urinárias, molécula de lesão renal-1 (KIM-1) e lipocalina associada à gelatinase de neutrófilos (NGAL) aumentaram substancialmente. Em contraste, a albumina urinária e a depuração da creatinina foram reduzidas de forma dependente da dose nos grupos tratados com timerosal. Os resultados demonstraram que o timerosal aumentou significativamente os indicadores de inflamação, incluindo fator nuclear kappaB (NF-κB), fator de necrose tumoral-α (TNF-α), interleucina-1β (IL-1β), níveis de interleucina-6 (IL-6) e atividades da ciclooxigenase-2 (COX-2), DNA e danos histopatológicos dependentes da dose. Portanto, os presentes achados verificaram que o timerosal exerceu nefrotoxicidade em ratos albinos machos.(AU)


Assuntos
Animais , Masculino , Ratos , Timerosal/efeitos adversos , Timerosal/toxicidade , Rim/efeitos dos fármacos , Nefropatias/induzido quimicamente , Ratos Wistar
5.
J. venom. anim. toxins incl. trop. dis ; 28: e20210080, 2022. graf, tab
Artigo em Inglês | VETINDEX | ID: biblio-1395757

Resumo

Background: A new pit viper, Protobothrops kelomohy, has been recently discovered in northern and northwestern Thailand. Envenoming by the other Protobothrops species across several Asian countries has been a serious health problem since their venom is highly hematotoxic. However, the management of P. kelomohy bites is required as no specific antivenom is available. This study aimed to investigate the biochemical properties and proteomes of P. kelomohy venom (PKV), including the cross-neutralization to its lethality with antivenoms available in Thailand. Methods: PKV was evaluated for its neutralizing capacity (ER50), lethality (LD50), procoagulant and hemorrhagic effects with three monovalent antivenoms (TAAV, DSAV, and CRAV) and one polyvalent (HPAV) hematotoxic antivenom. The enzymatic activities were examined in comparison with venoms of Trimeresurus albolabris (TAV), Daboia siamensis (DSV), Calloselasma rhodostoma (CRV). Molecular mass was separated on SDS-PAGE, then the specific proteins were determined by western blotting. The venom protein classification was analyzed using mass spectrometry-based proteomics. Results: Intravenous LD50 of PKV was 0.67 µg/g. ER50 of HPAV, DSAV and TAAV neutralize PKV at 1.02, 0.36 and 0.12 mg/mL, respectively. PKV exhibited procoagulant effect with a minimal coagulation dose of 12.5 ± 0.016 µg/mL and hemorrhagic effect with a minimal hemorrhagic dose of 1.20 ± 0.71 µg/mouse. HPAV was significantly effective in neutralizing procoagulant and hemorrhagic effects of PKV than those of TAAV, DSAV and CRAV. All enzymatic activities among four venoms exhibited significant differences. PKV proteome revealed eleven classes of putative snake venom proteins, predominantly metalloproteinase (40.85%), serine protease (29.93%), and phospholipase A2 (15.49%). Conclusions: Enzymatic activities of PKV are similarly related to other viperid venoms in this study by quantitatively hematotoxic properties. Three major venom toxins were responsible for coagulopathy in PKV envenomation. The antivenom HPAV was considered effective in neutralizing the lethality, procoagulant and hemorrhagic effects of PKV.(AU)


Assuntos
Animais , Venenos de Víboras/análise , Fenômenos Bioquímicos/fisiologia , Proteômica/métodos , Tailândia , Antivenenos/análise
6.
Acta sci. vet. (Impr.) ; 50: Pub.1860-2022. tab
Artigo em Português | VETINDEX | ID: biblio-1458535

Resumo

Background: Scorpionism is a worldwide medical issue, especially relevant in the tropical and subtropical countries. Tityusserrulatus is the species responsible for most cases in Brazil. Antivenom administration to victims is the sole specific therapyobtained from donor animals. Most of these donors suffer with symptoms of the poisoning, debilitating their health andreducing their life expectancy. The aim of the present research was to evaluate whether the immunogens prepared fromthe crude and detoxified venom of T. serrulatus promoted different changes in fractionated sheep plasma proteins, duringa scorpion antivenom serum production.Materials, Methods & Results: Twelve sheep, healthy, mean weight of 30 kg, were distributed into 3 groups (n = 4): G1(control), G2 (crude venom) and G3 (detoxified venom). The adopted immunization protocol (first cycle) had 6 doses, 3using Freund’s adjuvant, with a 21-day interval between each one (day 0, 22 and 43), and 3 doses with no adjuvant (booster)and 0.2 mg of antigen (reinforcement), spaced 3 days between each other (day 50, 53 and 56). Group control (G1) received6 immunizations with phosphate buffered saline (PBS) associated with Freund’s adjuvant (1:1), while the other 2 groupsreceived 0.5 mg of venom (G2) and detoxified venom (G3), respectively, diluted in PBS, associated with the Freund adjuvant. The boosters were 1/3 of the initial dose, diluted only PBS. At baseline (T0) and at 24 and 48 h after immunization,all animals underwent clinical examinations. Blood samples were collected at day 0, 22, 43, 53 and 56 for proteinogramanalysis. Total protein, albumin and globulins fractions were measured. Plasma albumin concentration at T0 ranged from3.41-4.86 g/dL, with a mean value of 4.12 g/dL. There was no statistical difference between...


Assuntos
Animais , Antivenenos , Ovinos/imunologia , Proteínas Sanguíneas/análise , Venenos de Escorpião/imunologia , Escorpiões , Soros Imunes
7.
J. venom. anim. toxins incl. trop. dis ; 28: e20220026, 2022. tab, graf, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1418297

Resumo

Background: Scorpion neurotoxins such as those that modify the mammalian voltagegated sodium ion channels (Nav) are the main responsible for scorpion envenomation. Their neutralization is crucial in the production of antivenoms against scorpion stings. Methods: In the present study, two in silico designed genes ­ one that codes for a native neurotoxin from the venom of the Anatolian scorpion Androctonus crassicauda, named Acra 4 ­ and another non-native toxin ­ named consensus scorpion toxin (SccTx) obtained from the alignment of the primary structures of the most toxic neurotoxins from the Middle Eastern and North African scorpions ­ were recombinantly expressed in E. coli Origami. Results: Following bacterial expression, the two expressed neurotoxins, hereafter named HisrAcra4 and HisrSccTx, were obtained from inclusion bodies. Both recombinant neurotoxins were obtained in multiple Cys-Cys isoforms. After refolding, the active protein fractions were identified with molecular masses of 8,947.6 and 9,989.1 Da for HisrAcra4 and HisrSccTx, respectively, which agreed with their expected theoretical masses. HisrAcra4 and HisrSccTx were used as antigens to immunize two groups of rabbits, to produce either anti-HisrAcra4 or anti-HisrSccTx serum antibodies, which in turn could recognize and neutralize neurotoxins from venoms of scorpion species from the Middle East and North Africa. The antibodies obtained from rabbits neutralized the 3LD50 of Androctonus australis, Leiurus quinquestriatus hebraeus and Buthus occitanus venoms, but they did not neutralize A. crassicauda and A. mauritanicus venoms. In addition, the anti-HisrAcra4 antibodies did not neutralize any of the five scorpion venoms tested. However, an antibody blend of anti-HisrAcra4 and anti-HisrSccTx was able to neutralize A. crassicauda and A. mauritanicus venoms. Conclusions: Two recombinant Nav neurotoxins, from different peptide families, were used as antigens to generate IgGs for neutralizing scorpion venoms of species from the Middle East and North Africa.(AU)


Assuntos
Animais , Venenos de Escorpião/enzimologia , Neurotoxinas/análise , Proteínas Recombinantes/análise
8.
J. venom. anim. toxins incl. trop. dis ; 27: e20200066, 2021. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1154773

Resumo

In Central and South America, snakebite envenomation is mainly caused by Bothrops spp. snakes, whose venoms feature significant biochemical richness, including serine proteases. The available bothropic antivenoms are efficient in avoiding fatalities, but do not completely neutralize venom serine proteases, which are co-responsible for some disorders observed during envenomation. Methods: In order to search for tools to improve the antivenom's, 6-mer peptides were designed based on a specific substrate for Bothrops jararaca venom serine proteases, and then synthesized, with the intention to selectively inhibit these enzymes. Results: Using batroxobin as a snake venom serine protease model, two structurally similar inhibitor peptides were identified. When tested on B. jararaca venom, one of the new inhibitors displayed a good potential to inhibit the activity of the venom serine proteases. These inhibitors do not affect human serine proteases as human factor Xa and thrombin, due to their selectivity. Conclusion: Our study identified two small peptides able to inhibit bothropic serine proteases, but not human ones, can be used as tools to enhance knowledge of the venom composition and function. Moreover, one promising peptide (pepC) was identified that can be explored in the search for improving Bothrops spp. envenomation treatment.(AU)


Assuntos
Animais , Venenos de Serpentes , Antivenenos , Bothrops , Serina Proteases , Peptídeos
9.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200066, 2021. graf
Artigo em Inglês | VETINDEX | ID: vti-31986

Resumo

In Central and South America, snakebite envenomation is mainly caused by Bothrops spp. snakes, whose venoms feature significant biochemical richness, including serine proteases. The available bothropic antivenoms are efficient in avoiding fatalities, but do not completely neutralize venom serine proteases, which are co-responsible for some disorders observed during envenomation. Methods: In order to search for tools to improve the antivenom's, 6-mer peptides were designed based on a specific substrate for Bothrops jararaca venom serine proteases, and then synthesized, with the intention to selectively inhibit these enzymes. Results: Using batroxobin as a snake venom serine protease model, two structurally similar inhibitor peptides were identified. When tested on B. jararaca venom, one of the new inhibitors displayed a good potential to inhibit the activity of the venom serine proteases. These inhibitors do not affect human serine proteases as human factor Xa and thrombin, due to their selectivity. Conclusion: Our study identified two small peptides able to inhibit bothropic serine proteases, but not human ones, can be used as tools to enhance knowledge of the venom composition and function. Moreover, one promising peptide (pepC) was identified that can be explored in the search for improving Bothrops spp. envenomation treatment.(AU)


Assuntos
Animais , Venenos de Serpentes , Antivenenos , Bothrops , Serina Proteases , Peptídeos
10.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200177, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31990

Resumo

The western Russell's viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell's viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity. Methods: The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol. Results: DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately. Conclusion: Considering that a large amount of venom can be injected by Russell's viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production.(AU)


Assuntos
Animais , Venenos/toxicidade , Antivenenos/biossíntese , Daboia , Proteômica , Localizações Geográficas
11.
J. venom. anim. toxins incl. trop. dis ; 27: e20200177, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1250255

Resumo

The western Russell's viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell's viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity. Methods: The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol. Results: DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately. Conclusion: Considering that a large amount of venom can be injected by Russell's viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production.(AU)


Assuntos
Animais , Venenos/toxicidade , Antivenenos/biossíntese , Daboia , Proteômica , Localizações Geográficas
12.
J. venom. anim. toxins incl. trop. dis ; 27: e20210012, 2021. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1340185

Resumo

Scorpionism is a relevant medical condition in Brazil. It is responsible for most accidents involving venomous animals in the country, which leads to severe symptoms that can evolve to death. In recent years, an increase of almost 50% in the incidence of scorpionism has been observed in the Northern Region, where the highest severity of envenoming has been notified since the beginning of the 21st century. This review aims to provide an in-depth assessment of public data and reports on symptoms and epidemiology of envenoming, ecological aspects of scorpions, and characterization of venoms and toxins to access the gaps that need to be filled in the knowledge of the scorpion species of medical importance from the Brazilian Amazon. A systematic search using the string words "Amazon" and "scorpion" was performed on 11 databases. No restriction on date, language or status of the publication was applied. Reports not related to the Brazilian Amazon were excluded. Therefore, 88 studies remained. It is shown that populations of scorpions of medical importance, even of the same species, may present significant toxic variations peculiar to some regions in the Brazilian Amazon, and commercial scorpion antivenoms were not able to shorten the intensity and duration of neurological manifestations in patients stung by T. silvestris, T. apiacas or T. obscurus. It is also highlighted that the toxins responsible for triggering these alterations have not been elucidated yet and this is a fruitful field for the development of more efficient antivenoms. Furthermore, the geographic distribution of scorpions of the genus Tityus in the Brazilian Amazon was revised and updated. The cumulative and detailed information provided in this review may help physicians and scientists interested in scorpionism in the Brazilian Amazon.(AU)


Assuntos
Animais , Escorpiões/classificação , Doenças Endêmicas , Picadas de Escorpião , Animais Peçonhentos
13.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20210012, 2021. tab, ilus
Artigo em Inglês | VETINDEX | ID: vti-32957

Resumo

Scorpionism is a relevant medical condition in Brazil. It is responsible for most accidents involving venomous animals in the country, which leads to severe symptoms that can evolve to death. In recent years, an increase of almost 50% in the incidence of scorpionism has been observed in the Northern Region, where the highest severity of envenoming has been notified since the beginning of the 21st century. This review aims to provide an in-depth assessment of public data and reports on symptoms and epidemiology of envenoming, ecological aspects of scorpions, and characterization of venoms and toxins to access the gaps that need to be filled in the knowledge of the scorpion species of medical importance from the Brazilian Amazon. A systematic search using the string words "Amazon" and "scorpion" was performed on 11 databases. No restriction on date, language or status of the publication was applied. Reports not related to the Brazilian Amazon were excluded. Therefore, 88 studies remained. It is shown that populations of scorpions of medical importance, even of the same species, may present significant toxic variations peculiar to some regions in the Brazilian Amazon, and commercial scorpion antivenoms were not able to shorten the intensity and duration of neurological manifestations in patients stung by T. silvestris, T. apiacas or T. obscurus. It is also highlighted that the toxins responsible for triggering these alterations have not been elucidated yet and this is a fruitful field for the development of more efficient antivenoms. Furthermore, the geographic distribution of scorpions of the genus Tityus in the Brazilian Amazon was revised and updated. The cumulative and detailed information provided in this review may help physicians and scientists interested in scorpionism in the Brazilian Amazon.(AU)


Assuntos
Animais , Escorpiões/classificação , Doenças Endêmicas , Picadas de Escorpião , Animais Peçonhentos
14.
J. venom. anim. toxins incl. trop. dis ; 27: e20210051, 2021. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1356458

Resumo

King Cobra (Ophiophagus hannah) has a significant place in many cultures, and is a medically important venomous snake in the world. Envenomation by this snake is highly lethal, manifested mainly by neurotoxicity and local tissue damage. King Cobra may be part of a larger species complex, and is widely distributed across Southeast Asia, southern China, northern and eastern regions as well as the Western Ghats of India, indicating potential geographical variation in venom composition. There is, however, only one species-specific King Cobra antivenom available worldwide that is produced in Thailand, using venom from the snake of Thai origin. Issues relating to the management of King Cobra envenomation (e.g., variation in the composition and toxicity of the venom, limited availability and efficacy of antivenom), and challenges faced in the research of venom (in particular proteomics), are rarely addressed. This article reviews the natural history and sociocultural importance of King Cobra, cases of snakebite envenomation caused by this species, current practice of management (preclinical and clinical), and major toxinological studies of the venom with a focus on venom proteomics, toxicity and neutralization. Unfortunately, epidemiological data of King Cobra bite is scarce, and venom proteomes reported in various studies revealed marked discrepancies in details. Challenges, such as inconsistency in snake venom sampling, varying methodology of proteomic analysis, lack of mechanistic and antivenomic studies, and controversy surrounding antivenom use in treating King Cobra envenomation are herein discussed. Future directions are proposed, including the effort to establish a standard, comprehensive Pan-Asian proteomic database of King Cobra venom, from which the venom variation can be determined. Research should be undertaken to characterize the toxin antigenicity, and to develop an antivenom with improved efficacy and wider geographical utility. The endeavors are aligned with the WHO´s roadmap that aims to reduce the disease burden of snakebite by 50% before 2030.(AU)


Assuntos
Animais , Intoxicação , Mordeduras de Serpentes , Serpentes , Antivenenos , Proteoma , Venenos Elapídicos , História Natural
15.
J. venom. anim. toxins incl. trop. dis ; 26: e20200025, 2020. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135152

Resumo

Antivenoms are the only validated treatment against snakebite envenoming. Numerous drawbacks pertaining to their availability, safety and efficacy are becoming increasingly evident due to low sustainability of current productions. Technological innovation of procedures generating therapeutics of higher purity and better physicochemical characteristics at acceptable cost is necessary. The objective was to develop at laboratory scale a compact, feasible and economically viable platform for preparation of equine F(ab')2 antivenom against Vipera ammodytes ammodytes venom and to support it with efficiency data, to enable estimation of the process cost-effectiveness. Methods: The principle of simultaneous caprylic acid precipitation and pepsin digestion has been implemented into plasma downstream processing. Balance between incomplete IgG breakdown, F(ab')2 over-digestion and loss of the active drug's protective efficacy was achieved by adjusting pepsin to a 1:30 substrate ratio (w/w) and setting pH at 3.2. Precipitation and digestion co-performance required 2 h-long incubation at 21 °C. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. In vivo neutralization potency of the F(ab')2 product against the venom's lethal toxicity was determined. Results: Only three consecutive steps, performed under finely tuned conditions, were sufficient for preservation of the highest process recovery with the overall yield of 74%, comparing favorably to others. At the same time, regulatory requirements were met. Final product was aggregate- and pepsin-free. Its composition profile was analyzed by mass spectrometry as a quality control check. Impurities, present in minor traces, were identified mostly as IgG/IgM fragments, contributing to active drug. Specific activity of the F(ab')2 preparation with respect to the plasma was increased 3.9-fold. Conclusion: A highly streamlined mode for production of equine F(ab')2 antivenom was engineered. In addition to preservation of the highest process yield and fulfillment of the regulatory demands, performance simplicity and rapidity in the laboratory setting were demonstrated. Suitability for large-scale manufacturing appears promising.(AU)


Assuntos
Espectrometria de Massas , Antivenenos , Cromatografia , Corrente Jusante , Plasma , Imunoterapia
16.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200025, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32211

Resumo

Antivenoms are the only validated treatment against snakebite envenoming. Numerous drawbacks pertaining to their availability, safety and efficacy are becoming increasingly evident due to low sustainability of current productions. Technological innovation of procedures generating therapeutics of higher purity and better physicochemical characteristics at acceptable cost is necessary. The objective was to develop at laboratory scale a compact, feasible and economically viable platform for preparation of equine F(ab')2 antivenom against Vipera ammodytes ammodytes venom and to support it with efficiency data, to enable estimation of the process cost-effectiveness. Methods: The principle of simultaneous caprylic acid precipitation and pepsin digestion has been implemented into plasma downstream processing. Balance between incomplete IgG breakdown, F(ab')2 over-digestion and loss of the active drug's protective efficacy was achieved by adjusting pepsin to a 1:30 substrate ratio (w/w) and setting pH at 3.2. Precipitation and digestion co-performance required 2 h-long incubation at 21 °C. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. In vivo neutralization potency of the F(ab')2 product against the venom's lethal toxicity was determined. Results: Only three consecutive steps, performed under finely tuned conditions, were sufficient for preservation of the highest process recovery with the overall yield of 74%, comparing favorably to others. At the same time, regulatory requirements were met. Final product was aggregate- and pepsin-free. Its composition profile was analyzed by mass spectrometry as a quality control check. Impurities, present in minor traces, were identified mostly as IgG/IgM fragments, contributing to active drug. Specific activity of the F(ab')2 preparation with respect to the plasma was increased 3.9-fold. Conclusion: A highly streamlined mode for production of equine F(ab')2 antivenom was engineered. In addition to preservation of the highest process yield and fulfillment of the regulatory demands, performance simplicity and rapidity in the laboratory setting were demonstrated. Suitability for large-scale manufacturing appears promising.(AU)


Assuntos
Antivenenos , Corrente Jusante , Imunoterapia , Cromatografia por Troca Iônica , Espectrometria de Massas
17.
J. venom. anim. toxins incl. trop. dis ; 26: e20190048, 2020. ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1056677

Resumo

The Eastern Russell's viper, Daboia siamensis, is a WHO Category 1 medically important venomous snake. It has a wide but disjunct distribution in Southeast Asia. The specific antivenom, D. siamensis Monovalent Antivenom (DsMAV-Thailand) is produced in Thailand but not available in Indonesia, where a heterologous trivalent antivenom, Serum Anti Bisa Ular (SABU), is used instead. This study aimed to investigate the geographical venom variation of D. siamensis from Thailand (Ds-Thailand) and Indonesia (Ds-Indonesia), and the immunorecognition of the venom proteins by antivenoms. Methods: The venom proteins were decomplexed with reverse-phase high-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by in-solution tryptic digestion, nano-liquid chromatography-tandem mass spectrometry and protein identification. The efficacies of DsMAV-Thailand and SABU in binding the various venom fractions were assessed using an enzyme-linked immunosorbent assay optimized for immunorecognition profiling. Results: The two most abundant protein families in Ds-Thailand venom are phospholipase A2 (PLA2) and Kunitz-type serine protease inhibitor (KSPI). Those abundant in Ds-Indonesia venom are PLA2 and serine protease. KSPI and vascular endothelial growth factor were detected in Ds-Thailand venom, whereas L-amino acid oxidase and disintegrin were present in Ds-Indonesia venom. Common proteins shared between the two included snaclecs, serine proteases, metalloproteinases, phosphodiesterases, 5'nucleotidases and nerve growth factors at varying abundances. DsMAV-Thailand exhibited strong immunorecognition of the major protein fractions in both venoms, but low immunoreactivity toward the low molecular weight proteins e.g. KSPI and disintegrins. On the other hand, SABU was virtually ineffective in binding all fractionated venom proteins. Conclusion: D. siamensis venoms from Thailand and Indonesia varied geographically in the protein subtypes and abundances. The venoms, nevertheless, shared conserved antigenicity that allowed effective immunorecognition by DsMAV-Thailand but not by SABU, consistent with the neutralization efficacy of the antivenoms. A specific, appropriate antivenom is needed in Indonesia to treat Russell's viper envenomation.(AU)


Assuntos
Animais , Antivenenos , Cromatografia Líquida de Alta Pressão , Daboia , Proteômica , Eletroforese em Gel de Poliacrilamida , Fosfolipases A2
18.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200056, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32273

Resumo

The venom of bamboo vipers (Trimeresurus stejnegeri - TS), commonly found in Taiwan, contains deadly hemotoxins that cause severe envenomation. Equine-derived antivenom is a specific treatment against snakebites, but its production costs are high and there are some inevitable side effects. The aim of the present work is to help in the development of an affordable and more endurable therapeutic strategy for snakebites. Methods: T. stejnegeri venom proteins were inactivated by glutaraldehyde in order to immunize hens for polyclonal immunoglobulin (IgY) antibodies production. After IgY binding assays, two antibody libraries were constructed expressing single-chain variable fragment (scFv) antibodies joined by the short or long linker for use in phage display antibody technology. Four rounds of biopanning were carried out. The selected scFv antibodies were then further tested for their binding activities and neutralization assays to TS proteins. Results: Purified IgY from egg yolk showed the specific binding ability to TS proteins. The dimensions of these two libraries contain 2.4 × 107 and 6.8 × 107 antibody clones, respectively. An increase in the titers of eluted phage indicated anti-TS clones remarkably enriched after 2nd panning. The analysis based on the nucleotide sequences of selected scFv clones indicated that seven groups of short linkers and four groups of long linkers were identified. The recombinant scFvs showed significant reactivity to TS venom proteins and a cross-reaction to Trimeresurus mucrosquamatus venom proteins. In in vivo studies, the data demonstrated that anti-TS IgY provided 100% protective effects while combined scFvs augmented partial survival time of mice injected with a lethal amount of TS proteins. Conclusion: Chickens were excellent hosts for the production of neutralization antibodies at low cost. Phage display technology is available for generation of monoclonal antibodies against snake venom proteins. These antibodies could be applied in the development of diagnostic kits or as an alternative for snakebite envenomation treatment in the near future.(AU)


Assuntos
Animais , Galinhas/imunologia , Venenos de Serpentes , Trimeresurus/imunologia , Antivenenos/análise , Antivenenos/imunologia
19.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20190048, Jan. 31, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-25640

Resumo

Background The Eastern Russells viper, Daboia siamensis, is a WHO Category 1 medically important venomous snake. It has a wide but disjunct distribution in Southeast Asia. The specific antivenom, D. siamensis Monovalent Antivenom (DsMAV-Thailand) is produced in Thailand but not available in Indonesia, where a heterologous trivalent antivenom, Serum Anti Bisa Ular (SABU), is used instead. This study aimed to investigate the geographical venom variation of D. siamensis from Thailand (Ds-Thailand) and Indonesia (Ds-Indonesia), and the immunorecognition of the venom proteins by antivenoms. Methods: The venom proteins were decomplexed with reverse-phase high-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by in-solution tryptic digestion, nano-liquid chromatography-tandem mass spectrometry and protein identification. The efficacies of DsMAV-Thailand and SABU in binding the various venom fractions were assessed using an enzyme-linked immunosorbent assay optimized for immunorecognition profiling. Results: The two most abundant protein families in Ds-Thailand venom are phospholipase A2 (PLA2) and Kunitz-type serine protease inhibitor (KSPI). Those abundant in Ds-Indonesia venom are PLA2 and serine protease. KSPI and vascular endothelial growth factor were detected in Ds-Thailand venom, whereas L-amino acid oxidase and disintegrin were present in Ds-Indonesia venom. Common proteins shared between the two included snaclecs, serine proteases, metalloproteinases, phosphodiesterases, 5nucleotidases and nerve growth factors at varying abundances. DsMAV-Thailand exhibited strong immunorecognition of the major protein fractions in both venoms, but low immunoreactivity toward the low molecular weight proteins e.g. KSPI and disintegrins. On the other hand, SABU was virtually ineffective in binding all fractionated venom proteins. Conclusion: D. siamensis venoms from Thailand and Indonesia varied...(AU)


Assuntos
Animais , Proteômica , Venenos de Víboras/antagonistas & inibidores , Antivenenos , Fosfolipases A2 , Inibidores de Serinopeptidase do Tipo Kazal
20.
J. venom. anim. toxins incl. trop. dis ; 26: e20200056, 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135145

Resumo

The venom of bamboo vipers (Trimeresurus stejnegeri - TS), commonly found in Taiwan, contains deadly hemotoxins that cause severe envenomation. Equine-derived antivenom is a specific treatment against snakebites, but its production costs are high and there are some inevitable side effects. The aim of the present work is to help in the development of an affordable and more endurable therapeutic strategy for snakebites. Methods: T. stejnegeri venom proteins were inactivated by glutaraldehyde in order to immunize hens for polyclonal immunoglobulin (IgY) antibodies production. After IgY binding assays, two antibody libraries were constructed expressing single-chain variable fragment (scFv) antibodies joined by the short or long linker for use in phage display antibody technology. Four rounds of biopanning were carried out. The selected scFv antibodies were then further tested for their binding activities and neutralization assays to TS proteins. Results: Purified IgY from egg yolk showed the specific binding ability to TS proteins. The dimensions of these two libraries contain 2.4 × 107 and 6.8 × 107 antibody clones, respectively. An increase in the titers of eluted phage indicated anti-TS clones remarkably enriched after 2nd panning. The analysis based on the nucleotide sequences of selected scFv clones indicated that seven groups of short linkers and four groups of long linkers were identified. The recombinant scFvs showed significant reactivity to TS venom proteins and a cross-reaction to Trimeresurus mucrosquamatus venom proteins. In in vivo studies, the data demonstrated that anti-TS IgY provided 100% protective effects while combined scFvs augmented partial survival time of mice injected with a lethal amount of TS proteins. Conclusion: Chickens were excellent hosts for the production of neutralization antibodies at low cost. Phage display technology is available for generation of monoclonal antibodies against snake venom proteins. These antibodies could be applied in the development of diagnostic kits or as an alternative for snakebite envenomation treatment in the near future.(AU)


Assuntos
Animais , Venenos de Serpentes , Antivenenos , Galinhas , Trimeresurus , Anticorpos , Bacteriófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA