Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 414
Filtrar
1.
J. venom. anim. toxins incl. trop. dis ; 29: e20220077, 2023. tab, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1418312

Resumo

Background: Bivalent freeze-dried neurotoxic (FN) antivenom has been the primary treatment since the 1980s for Taiwan cobra (Naja atra) envenomation in Taiwan. However, envenomation-related wound necrosis is a significant problem after cobra snakebites. In the present study, we analyzed the changes in serum venom concentration before and after antivenom administration to discover their clinical implications and the surgical treatment options for wound necrosis. Methods: The patients were divided into limb swelling and wound necrosis groups. The clinical outcome was that swelling started to subside 12 hours after antivenom treatment in the first group. Serum venom concentrations before and after using antivenoms were measured to assess the antivenom's ability to neutralize the circulating cobra venom. The venom levels in wound wet dressing gauzes, blister fluids, and debrided tissues were also investigated to determine their clinical significance. We also observed the evolutional changes of wound necrosis and chose a better wound debridement timing. Results: We prospectively enrolled 15 Taiwan cobra snakebite patients. Males accounted for most of this study population (n = 11, 73%). The wound necrosis group received more antivenom doses than the limb swelling group (4; IQR:2-6 vs 1; IQR:1-2, p = 0.05), and less records of serum venom concentrations changed before/after antivenom use (p = 0.0079). The necrotic wound site may release venom into circulation and cause more severe envenomation symptoms. Antivenom can efficiently diminish limb swelling in cobra bite patients. However, antivenom cannot reduce wound necrosis. Patients with early debridement of wound necrosis had a better limb outcome, while late or without debridement may have long-term hospital stay and distal limb morbidity. Conclusions: Antivenom can efficiently eliminate the circulating cobra venom in limb swelling patients without wound necrosis. Early debridement of the bite site wound and wet dressing management are suggestions for preventing extended tissue necrosis and hospital stay.(AU)


Assuntos
Animais , Mordeduras de Serpentes/terapia , Agentes Neurotóxicos/efeitos adversos , Taiwan , Necrose/terapia
2.
J. venom. anim. toxins incl. trop. dis ; 29: e20220080, 2023. tab, graf, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1448597

Resumo

Background: Bungarus multicinctus is one of the most dangerous venomous snakes prone to cardiopulmonary damage with extremely high mortality. In our previous work, we found that glutamine (Gln) and glutamine synthetase (GS) in pig serum were significantly reduced after Bungarus multicinctus bite. In the present study, to explore whether there is a link between the pathogenesis of cardiopulmonary injury and Gln metabolic changes induced by Bungarus multicinctus venom. We investigated the effect of Gln supplementation on the lung and heart function after snakebite. Methods: We supplemented different concentrations of Gln to mice that were envenomated by Bungarus multicinctus to observe the biological behavior, survival rate, hematological and pathological changes. Gln was supplemented immediately or one hour after the venom injection, and then changes in Gln metabolism were analyzed. Subsequently, to further explore the protective mechanism of glutamine on tissue damage, we measured the expression of heat-shock protein70 (HSP70), NF-κB P65, P53/PUMA by western blotting and real-time polymerase in the lung and heart. Results: Gln supplementation delayed the envenoming symptoms, reduced mortality, and alleviated the histopathological changes in the heart and lung of mice bitten by Bungarus multicinctus. Additionally, Gln increased the activity of glutamine synthetase (GS), glutamate dehydrogenase (GDH) and glutaminase (GLS) in serum. It also balanced the transporter SLC7A11 expression in heart and lung tissues. Bungarus multicinctus venom induced the NF-κB nuclear translocation in the lung, while the HO-1 expression was suppressed. At the same time, venom activated the P53/PUMA signaling pathway and the BAX expression in the heart. Gln treatment reversed the above phenomenon and increased HSP70 expression. Conclusion: Gln alleviated the glutamine metabolism disorder and cardiopulmonary damage caused by Bungarus multicinctus venom. It may protect lungs and heart against venom by promoting the expression of HSP70, inhibiting the activation of NF-κB and P53/PUMA, thereby delaying the process of snake venom and reducing mortality. The present results indicate that Gln could be a potential treatment for Bungarus multicinctus bite.


Assuntos
Bungarus , Venenos Elapídicos , Lesão Pulmonar/terapia , Glutamina/uso terapêutico
3.
J. venom. anim. toxins incl. trop. dis ; 29: e20220088, 2023. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1440485

Resumo

Abstract Background: Twenty-minute whole blood clotting test (20WBCT) and Modified Lee and White (MLW) method are the most routinely employed bedside tests for detecting coagulopathic snake envenomation. Our study compared the diagnostic utility of MLW and 20WBCT for snakebite victims at a tertiary care hospital in Central Kerala, South India. Methods: This single-center study recruited 267 patients admitted with snake bites. 20WBCT and MLW were performed simultaneously at admission along with the measurement of Prothrombin Time (PT). The diagnostic utility of 20WBCT and MLW was determined by comparing the sensitivity (Sn), specificity (Sp), positive and negative predictive values, likelihood ratios, and accuracy at admission with an INR value > 1.4. Results: Out of 267 patients, 20 (7.5%) patients had VICC. Amongst those who had venom-induced consumption coagulopathy (VICC), MLW was prolonged for 17 patients, (Sn 85% 95% confidence interval [CI]: 61.1-96.0) whereas 20WBCT was abnormal for 11 patients (Sn 55%, 95% CI: 32.04-76.17). MLW and 20WBCT were falsely positive for the same patient (Sp 99.6%, 95% CI: 97.4-99.9%). Conclusion: MLW is more sensitive than 20WBCT to detect coagulopathy at the bedside amongst snakebite victims. However, further studies are necessary for standardizing bedside coagulation tests in snakebite cases.


Assuntos
Tempo de Protrombina/métodos , Mordeduras de Serpentes/diagnóstico , Transtornos da Coagulação Sanguínea/diagnóstico , Fatores de Coagulação Sanguínea/análise
4.
J. venom. anim. toxins incl. trop. dis ; 28: e20210040, 2022. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1365074

Resumo

Background: Naja atra is a venomous snake species medically relevant in China. In the current study, we evaluated the composition and toxicological profile of venom collected from farm-raised N. atra. Methods: Venom was collected from third-generation captive bred N. atra on a snake farm in Hunan Province, China. The venom was analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis and nano-liquid chromatography with electrospray ionization tandem mass spectrometry. In addition, hemolytic activity, median lethal dose, serum biochemical and histopathological parameters were accessed. Results: N. atra venom proteome was dominated by phospholipase A2 (46.5%) and three-finger toxins (41.4 %), and a set of common low relative abundance proteins, including cysteine-rich secretory proteins (4.7%), NGF-beta (2.4%), snake venom metalloproteinase (1.5%), glutathione peroxidase (0.6%), vespryn (0.3%), and 5ʹ-nucleotidases (0.2%) were also found. Furthermore, the venom exhibited direct hemolytic activity, neurotoxicity, myotoxicity, and high lethal potency in mice, with a subcutaneous median lethal dose of 1.02 mg/kg. Histopathological analysis and serum biochemical tests revealed that venom caused acute hepatic, pulmonary and renal injury in mice. Conclusion: This study revealed the composition and toxicity of venom collected from farm-raised N. atra, thereby providing a reference for the analysis of venom samples collected from captive-born venomous snakes in the future.(AU)


Assuntos
Animais , Venenos de Serpentes/toxicidade , Fosfolipases A2 , Naja naja , Miotoxicidade , Nucleotidases
5.
J. venom. anim. toxins incl. trop. dis ; 28: e20210110, 2022. graf
Artigo em Inglês | VETINDEX | ID: biblio-1395930

Resumo

Background: The cardiovascular system is one of the first systems to be affected by snake toxins; but not many toxins exert a direct effect on the heart. Cobra venom cardiotoxins are among those few toxins that attack the heart. Although the two cardiotoxin types (S and P) differ in their central-loop structure, it is not known whether they differ in their effect on the mammalian heart. We compared the effects of S- and P-type cardiotoxins, CTÐ¥-1 and CTÐ¥-2, respectively, from the cobra Naja oxiana, on the isolated rat heart. Methods: An isolated rat heart perfused according to the Langendorff technique was used in this study to investigate the activity of cardiotoxins CTX-1 and CTX-2. The following parameters were registered: the left ventricular developed pressure, calculated as the difference between systolic and diastolic pressure in the left ventricle, the end-diastolic pressure, the heart rate, time to maximal end-diastolic pressure (heart contracture), and time to depression of the heart contraction. Results: Both cardiotoxins at the concentration of 5 µg/mL initially produce a slight increase in systolic intraventricular pressure, followed by its rapid decrease with a simultaneous increase in diastolic intraventricular pressure until reaching contracture. CTX-2 blocks cardiac contractions faster than CTX-1; in its presence the maximum diastolic pressure is reached faster and the magnitude of the developed contracture is higher. Conclusion: The P-type cardiotoxin CTX-2 more strongly impairs rat heart functional activity than the S-type cardiotoxin CTX-1, as expressed in its faster blockage of cardiac contractions as well as in more rapid development and greater magnitude of contracture in its presence.(AU)


Assuntos
Animais , Ratos , Proteínas Cardiotóxicas de Elapídeos/química , Venenos Elapídicos/toxicidade , Coração/fisiologia
6.
Pesqui. vet. bras ; 42: e07105, 2022. ilus
Artigo em Inglês | VETINDEX | ID: biblio-1386822

Resumo

In Brazil, snakebites are often cited as a cause of mortality in ruminants, but there are discrepancies in the literature regarding its actual prevalence, either by lack of diagnosis or by mistakes in the differential diagnosis. Among the factors that hinder the diagnosis are included the inconsistencies to distinguish between accidents caused by Bothrops and Crotalus, responsible for over 90% of the cases. For the diagnosis of accidents involving Lachesis muta, both the neurotropic and the proteolytic/hemolytic effects must be considered, similar to what is described in Crotalus scutulatus. This article describes the main clinical, pathological, and laboratory findings observed in envenoming by the aforementioned snakes and suggests procedures for establishing the diagnosis and differential diagnosis starting from a logical sequence, based on epidemiological evidence, clinical, laboratory, and pathological findings.


No Brasil, acidentes ofídicos são frequentemente citados como causa de mortalidade em ruminantes, mas existem discrepâncias em relação a sua atual prevalência, seja por falta de diagnóstico ou por erros no diagnóstico diferencial. Entre os fatores que dificultam o diagnóstico estão as inconsistências para distinguir entre os acidentes causados por Bothrops e Crotalus, responsáveis por mais de 90% dos casos. Para o diagnóstico de envenenamentos por Lachesis muta, devem ser considerados os efeitos neurotrópico e proteolítico/hemolíticos concomitantes, a exemplo do que ocorre com algumas cascavéis norte-americanas (Crotalus scutulatus, entre elas). Este artigo descreve os principais achados clinicopatológicos e laboratoriais observados em casos de envenenamento pelas serpentes citadas e sugere um roteiro simplificado para o estabelecimento do diagnóstico e diagnóstico diferencial, a partir de uma sequência lógica, baseada em evidências epidemiológicas e achados clínicos, laboratoriais e patológicos.


Assuntos
Animais , Mordeduras de Serpentes/diagnóstico , Mordeduras de Serpentes/mortalidade , Crotalus , Bothrops , Mordeduras de Serpentes/veterinária , Ruminantes
7.
J. venom. anim. toxins incl. trop. dis ; 28: e20220002, 2022. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1405509

Resumo

Background Cathepsin D (CatD) is a lysosomal proteolytic enzyme expressed in almost all tissues and organs. This protease is a multifunctional enzyme responsible for essential biological processes such as cell cycle regulation, differentiation, migration, tissue remodeling, neuronal growth, ovulation, and apoptosis. The overexpression and hypersecretion of CatD have been correlated with cancer aggressiveness and tumor progression, stimulating cancer cell proliferation, fibroblast growth, and angiogenesis. In addition, some studies report its participation in neurodegenerative diseases and inflammatory processes. In this regard, the search for new inhibitors from natural products could be an alternative against the harmful effects of this enzyme. Methods An investigation was carried out to analyze CatD interaction with snake venom toxins in an attempt to find inhibitory molecules. Interestingly, human CatD shows the ability to bind strongly to snake venom phospholipases A2 (svPLA2), forming a stable muti-enzymatic complex that maintains the catalytic activity of both CatD and PLA2. In addition, this complex remains active even under exposure to the specific inhibitor pepstatin A. Furthermore, the complex formation between CatD and svPLA2 was evidenced by surface plasmon resonance (SPR), two-dimensional electrophoresis, enzymatic assays, and extensive molecular docking and dynamics techniques. Conclusion The present study suggests the versatility of human CatD and svPLA2, showing that these enzymes can form a fully functional new enzymatic complex.


Assuntos
Catepsina D/análise , Venenos Elapídicos/química , Fosfolipases A2/análise , Complexos Multienzimáticos/química
8.
Acta sci. vet. (Impr.) ; 50(supl.1): Pub. 841, 2022. ilus
Artigo em Inglês | VETINDEX | ID: biblio-1415202

Resumo

Background: Snakebite envenoming is a condition that affects humans and domestic animals worldwide. Identification of the snake species involved in the envenomation is infrequent. Bothrops envenomation presents typical clinicopathological features. This report describes epidemiological, clinical, and pathological data of 2 cases of Bothrops envenomation in dogs, including the first case of Bothrops moojeni snake striking a domestic animal in Brazil. Cases: Case 1. A dog was witnessed to have a Bothrops moojeni snakebite on a farm. In the first 24 h, acute lameness, pain, diffuse swelling, focal bleeding at the left forelimb, and increased whole-blood clotting time were observed in the envenomed dog. Polyvalent antivenom was administered in addition to fluid therapy, analgesics, corticosteroids, and antibiotics. On the 5th day, the animal presented spontaneous bleeding at the wound site, thrombocytopenia, and increased whole-blood clotting time. An additional dose of polyvalent antivenom was administered, and local treatment at the snakebite site was initiated. After 13 days, the dog showed no clinical or laboratory changes and recovered entirely. Case 2. A mongrel dog was taken for a necropsy to determine the cause of death. Grossly, major findings included swelling in the nasal plane that extended to the neck and dissecting hemorrhage in the subcutaneous tissue and adjacent musculature. Hemorrhages were observed in the heart, parietal pleura, left forelimb, lumbar region, and perirenal tissue. Marked necrosis and disruption of small blood vessels and lymphatics within the deep dermis and subcutaneous tissue were the main microscopic findings close to the snakebite site. Additionally, degeneration and necrosis of muscle fibers and dissecting hemorrhage were observed in the head and neck tissues surrounding the snakebite site. Kidneys showed marked interstitial hemorrhage and acute tubular nephrosis. Discussion: Bothrops envenoming is characterized by local (hemorrhage, dermonecrosis, and myonecrosis) and systemic (coagulative disorders, systemic hemorrhage, and acute kidney injury) changes due to the effect of the main venom components such as phospholipase A2 and metalloproteinases. These changes are hallmarks for the bothropic envenomation, supporting the diagnosis in cases 1 and 2. In case 1, the dog developed a Bothrops moojeni snakebite envenomation, but the immediate treatment with antivenom allowed a favorable outcome. In case 2, gross and microscopic findings supported the presumptive diagnosis of fatal bothropic envenomation. A marked local reaction such as swelling, pain, bleeding, bruising, and tissue necrosis was observed in case 1. In case 2, the most significant local changes were swelling and edema at the head and neck, hemorrhage in the subcutaneous tissue, and adjacent musculature. Systemic effects were observed clinically as spontaneous bleeding, thrombocytopenia, increased whole-blood clotting time (Case 1), systemic hemorrhages, and acute tubular nephrosis (Case 2). A proper treatment probably prevented the development of acute renal failure in Case 1. Herein, we show the first case of accidental snakebite envenomation by B. moojeni in a dog in Brazil. Information is scarce on the identification of venomous snake species striking domestic animals. Fast detection of well-determined clinical and pathological findings of Bothrops envenomation is essential for a correct diagnosis, therapeutics, and a good prognosis, even in cases with an unknown history.


Assuntos
Animais , Cães , Mordeduras de Serpentes/fisiopatologia , Mordeduras de Serpentes/veterinária , Inibidores dos Fatores de Coagulação Sanguínea/análise , Venenos de Crotalídeos/toxicidade , Bothrops
9.
Acta amaz ; 52(4): 323-327, 2022. ilus, mapas
Artigo em Inglês | VETINDEX | ID: biblio-1414093

Resumo

The millipede Chondromorpha xanthotricha, supposedly native to Sri Lanka and southern India, is considered a pantropical species occurring in Southeast Asia, North America, Mesoamerica, the Caribbean, Central America and northern South America. Here we report the first record of this species for Brazil, in the central Amazon region of the country, with taxonomic notes and images of male and female specimens.(AU)


O diplópode Chondromorpha xanthotricha, supostamente nativo do Sri Lanka e sul da Índia, é considerado uma espécie pantropical com ocorrência no Sudeste Asiático, América do Norte, Mesoamérica, Caribe, América Central e norte da América do Sul. Aqui nós reportamos o primeiro registro dessa espécie para o Brasil, na região central da Amazônia brasileira, com notas taxonômicas e ilustrações de espécimes macho e fêmea.(AU)


Assuntos
Animais , Masculino , Feminino , Espécies Introduzidas , Quilópodes/classificação , Especificidade da Espécie , Brasil
10.
Braz. j. biol ; 82: 1-6, 2022. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468432

Resumo

Mormodica charantia (Curcubitaceae) is a plant with great medicinal potential, also used as an alternative of mosquitoes control as demonstrated by previous studies. We evaluated the larvicidal activity of crude extracts of ethyl acetate, methanol and hexane from flowers and fruits of M. charantia against Aedes aegypti (Culicidae). Flowers and fruits were macerated in methanol, ethyl acetate and hexane. Bioassays were performed with application of the extracts at final concentrations of 1 - 200 µg/mL in the middle of the third instar larvae of A. aegypti (L3). The results showed high toxicity to ethyl acetate extracts from flowers and fruits at concentrations of 200 µg/mL and 100 µg/mL, with 97% and 87% of larvae mortality (L3), respectively. Hexane extract demonstrated low toxicity, while methanol extract exhibited 78% larval mortality. The data suggested that the ethyl acetate extracts of flowers and fruits of M. charantia can effectively contribute to larvicidal activity. In addition, purification of M. charantia extracts may lead to a promising larvicidal activity to control the A. aegypti population.


Mormodica charantia (Curcubitaceae) é uma planta com grande potencial medicinal, sendo também uma alternativa no controle de mosquitos conforme demonstrado por estudos prévios. Avaliou-se a atividade larvicida dos extratos brutos de acetato de etila, metanólico e hexânico das folhas, flores e frutos de M. charantia no Aedes aegypti (Culicidae). Folhas, flores e frutos foram macerados em metanol, acetato de etila e hexano. Os bioensaios foram realizados com aplicação dos extratos nas concentrações finais de 1-200 µg/mL no meio de criação das larvas de terceiro estádio de A. aegypti (L3). Os resultados obtidos apontaram alta toxicidade para os extratos de acetato de etila das flores e frutos nas concentrações de 200 µg/mL e 100 µg/mL com mortalidade em L3 de 96,7% e 87%, respectivamente. Baixa toxicidade para o extrato hexânico e o extrato metanólico apresentou mortalidade de 78% larval. Os dados sugerem que os extratos de acetato de etila das flores e frutos de M. charantia podem contribuir efetivamente para atividade larvicida no controle da população de A. aegypti.


Assuntos
Aedes , Larvicidas/análise , Momordica charantia/efeitos dos fármacos , Momordica charantia/toxicidade
11.
Braz. J. Biol. ; 82: 1-6, 2022. tab
Artigo em Inglês | VETINDEX | ID: vti-32865

Resumo

Mormodica charantia (Curcubitaceae) is a plant with great medicinal potential, also used as an alternative of mosquitoes control as demonstrated by previous studies. We evaluated the larvicidal activity of crude extracts of ethyl acetate, methanol and hexane from flowers and fruits of M. charantia against Aedes aegypti (Culicidae). Flowers and fruits were macerated in methanol, ethyl acetate and hexane. Bioassays were performed with application of the extracts at final concentrations of 1 - 200 µg/mL in the middle of the third instar larvae of A. aegypti (L3). The results showed high toxicity to ethyl acetate extracts from flowers and fruits at concentrations of 200 µg/mL and 100 µg/mL, with 97% and 87% of larvae mortality (L3), respectively. Hexane extract demonstrated low toxicity, while methanol extract exhibited 78% larval mortality. The data suggested that the ethyl acetate extracts of flowers and fruits of M. charantia can effectively contribute to larvicidal activity. In addition, purification of M. charantia extracts may lead to a promising larvicidal activity to control the A. aegypti population.(AU)


Mormodica charantia (Curcubitaceae) é uma planta com grande potencial medicinal, sendo também uma alternativa no controle de mosquitos conforme demonstrado por estudos prévios. Avaliou-se a atividade larvicida dos extratos brutos de acetato de etila, metanólico e hexânico das folhas, flores e frutos de M. charantia no Aedes aegypti (Culicidae). Folhas, flores e frutos foram macerados em metanol, acetato de etila e hexano. Os bioensaios foram realizados com aplicação dos extratos nas concentrações finais de 1-200 µg/mL no meio de criação das larvas de terceiro estádio de A. aegypti (L3). Os resultados obtidos apontaram alta toxicidade para os extratos de acetato de etila das flores e frutos nas concentrações de 200 µg/mL e 100 µg/mL com mortalidade em L3 de 96,7% e 87%, respectivamente. Baixa toxicidade para o extrato hexânico e o extrato metanólico apresentou mortalidade de 78% larval. Os dados sugerem que os extratos de acetato de etila das flores e frutos de M. charantia podem contribuir efetivamente para atividade larvicida no controle da população de A. aegypti.(AU)


Assuntos
Momordica charantia/efeitos dos fármacos , Momordica charantia/toxicidade , Larvicidas/análise , Aedes
12.
Braz. j. biol ; 82: e236498, 2022. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1153475

Resumo

Mormodica charantia (Curcubitaceae) is a plant with great medicinal potential, also used as an alternative of mosquitoes control as demonstrated by previous studies. We evaluated the larvicidal activity of crude extracts of ethyl acetate, methanol and hexane from flowers and fruits of M. charantia against Aedes aegypti (Culicidae). Flowers and fruits were macerated in methanol, ethyl acetate and hexane. Bioassays were performed with application of the extracts at final concentrations of 1 - 200 µg/mL in the middle of the third instar larvae of A. aegypti (L3). The results showed high toxicity to ethyl acetate extracts from flowers and fruits at concentrations of 200 µg/mL and 100 µg/mL, with 97% and 87% of larvae mortality (L3), respectively. Hexane extract demonstrated low toxicity, while methanol extract exhibited 78% larval mortality. The data suggested that the ethyl acetate extracts of flowers and fruits of M. charantia can effectively contribute to larvicidal activity. In addition, purification of M. charantia extracts may lead to a promising larvicidal activity to control the A. aegypti population.


Mormodica charantia (Curcubitaceae) é uma planta com grande potencial medicinal, sendo também uma alternativa no controle de mosquitos conforme demonstrado por estudos prévios. Avaliou-se a atividade larvicida dos extratos brutos de acetato de etila, metanólico e hexânico das folhas, flores e frutos de M. charantia no Aedes aegypti (Culicidae). Folhas, flores e frutos foram macerados em metanol, acetato de etila e hexano. Os bioensaios foram realizados com aplicação dos extratos nas concentrações finais de 1-200 µg/mL no meio de criação das larvas de terceiro estádio de A. aegypti (L3). Os resultados obtidos apontaram alta toxicidade para os extratos de acetato de etila das flores e frutos nas concentrações de 200 µg/mL e 100 µg/mL com mortalidade em L3 de 96,7% e 87%, respectivamente. Baixa toxicidade para o extrato hexânico e o extrato metanólico apresentou mortalidade de 78% larval. Os dados sugerem que os extratos de acetato de etila das flores e frutos de M. charantia podem contribuir efetivamente para atividade larvicida no controle da população de A. aegypti.


Assuntos
Animais , Aedes , Momordica charantia , Inseticidas/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta , Larva
13.
J. venom. anim. toxins incl. trop. dis ; 28: e20210103, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1386129

Resumo

Background: Several studies have been published on the characterization of Trimeresurus venoms. However, there is still limited information concerning the venom composition of Trimeresurus species distributed throughout Indonesia, which contributes to significant snakebite envenomation cases. The present study describes a comparative on the composition of T. albolabris, T. insularis, T. puniceus, and T. purpureomaculatus venoms originated from Indonesia. Methods: Protein content in the venom of four Trimeresurus species was determined using Bradford assay, and the venom proteome was elucidated using one-dimension SDS PAGE nano-ESI- LCMS/MS shotgun proteomics. Results: The venom of T. albolabris contained the highest protein content of 11.1 mg/mL, followed by T. puniceus, T. insularis and T. purpureomaculatus venom with 10.7 mg/mL, 8.9 mg/mL and 5.54 mg/mL protein, respectively. In total, our venomic analysis identified 65 proteins belonging to 16 protein families in T. purpureomaculatus; 64 proteins belonging to 18 protein families in T. albolabris; 58 different proteins belonging to 14 protein families in T. puniceus; and 48 different proteins belonging to 14 protein familiesin T. insularis. Four major proteins identified in all venoms belonged to snake venom metalloproteinase, C-type lectin, snake venom serine protease, and phospholipase A2. There were 11 common proteins in all venoms, and T. puniceus venom has the highest number of unique proteins compared to the other three venoms. Cluster analysis of the proteins and venoms showed that T. puniceus venom has the most distinct venom composition. Conclusions: Overall, the results highlighted venom compositional variation of four Trimeresurus spp. from Indonesia. The venoms appear to be highly similar, comprising at least four protein families that correlate with venom's toxin properties and function. This study adds more information on venom variability among Trimeresurus species within the close geographic origin and may contribute to the development of optimum heterologous antivenom.(AU)


Assuntos
Trimeresurus/fisiologia , Proteoma/análise , Venenos de Crotalídeos/química , Indonésia
14.
Acta sci. vet. (Impr.) ; 50(suppl.1): Pub.739-4 jan. 2022. ilus, tab
Artigo em Inglês | VETINDEX | ID: biblio-1458547

Resumo

Background: Snakebites are the main responsible for envenoming in dogs and the bothropic venom remains the mostcommon in Brazil, which can induce a necrotic skin wound. Hyperbaric oxygen therapy (HBOT) use 100% oxygen underhigh pressure and used to treat different wounds in human patients. To the authors’ knowledge, no reports regarding to usethe HBOT in skin wound caused by snakebite (Bothrops jararaca) are present in the literature. The present clinical caseaimed to describe the use of HBOT for the treatment of an extensive necrotic wound caused by jararaca snakebite in a dog.Case: A neutered 8-year-old mixed-breed dog, weighing 12 kg, was admitted with a 7-day history of extensive necroticwound was identified in the face and neck causing by a snakebite, and no sign of pain. The procedure of HBOT (singlesessions of 1.5 ATM, 45 min, repeated every 48 h, up to 12 sessions) was decided, and the complete blood cells, alanineaminotransferase, creatinine, creatine kinase, prothrombin time, activated partial thromboplastin time, wound clinicalevaluation were measured at the following time-points: 2nd, 5th, 10th, and 12th sessions. At the 5th session was identifiedleukopenia, neutropenia and lymphopenia. Wound re-epithelialization was initiated after the 5th session, and the completeepithelialization was identified at the 12th session of HBOT. During the HBOT no side effects were identified. Threemonths after the HBOT finished, the animal returned to the clinic and the clinical status evolved positively, and the woundwas completed healed.Discussion: This report described the treatment of an extensive necrotic skin wound caused by snakebite (Bothrops jararaca)in an 8-year-old, neutered, mixed-breed dog using the HBOT. The wound healing...


Assuntos
Animais , Cães , Cicatrização , Necrose/veterinária , Oxigenoterapia Hiperbárica/métodos , Oxigenoterapia Hiperbárica/veterinária , Venenos de Crotalídeos/antagonistas & inibidores , Bothrops
15.
Acta sci. vet. (Online) ; 50(suppl.1): Pub. 739, Jan. 17, 2022. ilus, tab
Artigo em Inglês | VETINDEX | ID: vti-32962

Resumo

Background: Snakebites are the main responsible for envenoming in dogs and the bothropic venom remains the mostcommon in Brazil, which can induce a necrotic skin wound. Hyperbaric oxygen therapy (HBOT) use 100% oxygen underhigh pressure and used to treat different wounds in human patients. To the authors knowledge, no reports regarding to usethe HBOT in skin wound caused by snakebite (Bothrops jararaca) are present in the literature. The present clinical caseaimed to describe the use of HBOT for the treatment of an extensive necrotic wound caused by jararaca snakebite in a dog.Case: A neutered 8-year-old mixed-breed dog, weighing 12 kg, was admitted with a 7-day history of extensive necroticwound was identified in the face and neck causing by a snakebite, and no sign of pain. The procedure of HBOT (singlesessions of 1.5 ATM, 45 min, repeated every 48 h, up to 12 sessions) was decided, and the complete blood cells, alanineaminotransferase, creatinine, creatine kinase, prothrombin time, activated partial thromboplastin time, wound clinicalevaluation were measured at the following time-points: 2nd, 5th, 10th, and 12th sessions. At the 5th session was identifiedleukopenia, neutropenia and lymphopenia. Wound re-epithelialization was initiated after the 5th session, and the completeepithelialization was identified at the 12th session of HBOT. During the HBOT no side effects were identified. Threemonths after the HBOT finished, the animal returned to the clinic and the clinical status evolved positively, and the woundwas completed healed.Discussion: This report described the treatment of an extensive necrotic skin wound caused by snakebite (Bothrops jararaca)in an 8-year-old, neutered, mixed-breed dog using the HBOT. The wound healing...(AU)


Assuntos
Animais , Cães , Venenos de Crotalídeos/antagonistas & inibidores , Necrose/veterinária , Oxigenoterapia Hiperbárica/métodos , Oxigenoterapia Hiperbárica/veterinária , Cicatrização , Bothrops
16.
J. venom. anim. toxins incl. trop. dis ; 27: e20210051, 2021. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1356458

Resumo

King Cobra (Ophiophagus hannah) has a significant place in many cultures, and is a medically important venomous snake in the world. Envenomation by this snake is highly lethal, manifested mainly by neurotoxicity and local tissue damage. King Cobra may be part of a larger species complex, and is widely distributed across Southeast Asia, southern China, northern and eastern regions as well as the Western Ghats of India, indicating potential geographical variation in venom composition. There is, however, only one species-specific King Cobra antivenom available worldwide that is produced in Thailand, using venom from the snake of Thai origin. Issues relating to the management of King Cobra envenomation (e.g., variation in the composition and toxicity of the venom, limited availability and efficacy of antivenom), and challenges faced in the research of venom (in particular proteomics), are rarely addressed. This article reviews the natural history and sociocultural importance of King Cobra, cases of snakebite envenomation caused by this species, current practice of management (preclinical and clinical), and major toxinological studies of the venom with a focus on venom proteomics, toxicity and neutralization. Unfortunately, epidemiological data of King Cobra bite is scarce, and venom proteomes reported in various studies revealed marked discrepancies in details. Challenges, such as inconsistency in snake venom sampling, varying methodology of proteomic analysis, lack of mechanistic and antivenomic studies, and controversy surrounding antivenom use in treating King Cobra envenomation are herein discussed. Future directions are proposed, including the effort to establish a standard, comprehensive Pan-Asian proteomic database of King Cobra venom, from which the venom variation can be determined. Research should be undertaken to characterize the toxin antigenicity, and to develop an antivenom with improved efficacy and wider geographical utility. The endeavors are aligned with the WHO´s roadmap that aims to reduce the disease burden of snakebite by 50% before 2030.(AU)


Assuntos
Animais , Intoxicação , Mordeduras de Serpentes , Serpentes , Antivenenos , Proteoma , Venenos Elapídicos , História Natural
17.
J. venom. anim. toxins incl. trop. dis ; 27: e20200125, 2021. tab, graf
Artigo em Inglês | VETINDEX, LILACS | ID: biblio-1287096

Resumo

Background Naja mandalayensis is a spitting cobra from Myanmar. To the best of our knowledge, no studies on this venom composition have been conducted so far. On the other hand, few envenomation descriptions state that it elicits mainly local inflammation in the victims' eyes, the preferred target of this spiting cobra. Symptoms would typically include burning and painful sensation, conjunctivitis, edema and temporary loss of vision. Methods We have performed a liquid-chromatography (C18-RP-HPLC) mass spectrometry (ESI-IT-TOF/MS) based approach in order to biochemically characterize N. mandalayensis venom. Results A wide variety of three-finger toxins (cardiotoxins) and metallopeptidases were detected. Less abundant, but still representative, were cysteine-rich secretory proteins, L-amino-acid oxidases, phospholipases A2, venom 5'-nucleotidase and a serine peptidase inhibitor. Other proteins were present, but were detected in a relatively small concentration. Conclusion The present study set the basis for a better comprehension of the envenomation from a molecular perspective and, by increasing the interest and information available for this species, allows future venom comparisons among cobras and their diverse venom proteins.(AU)


Assuntos
Animais , Proteômica/classificação , Venenos Elapídicos/enzimologia
18.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200125, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31929

Resumo

Naja mandalayensis is a spitting cobra from Myanmar. To the best of our knowledge, no studies on this venom composition have been conducted so far. On the other hand, few envenomation descriptions state that it elicits mainly local inflammation in the victims' eyes, the preferred target of this spiting cobra. Symptoms would typically include burning and painful sensation, conjunctivitis, edema and temporary loss of vision. Methods We have performed a liquid-chromatography (C18-RP-HPLC) mass spectrometry (ESI-IT-TOF/MS) based approach in order to biochemically characterize N. mandalayensis venom. Results A wide variety of three-finger toxins (cardiotoxins) and metallopeptidases were detected. Less abundant, but still representative, were cysteine-rich secretory proteins, L-amino-acid oxidases, phospholipases A2, venom 5'-nucleotidase and a serine peptidase inhibitor. Other proteins were present, but were detected in a relatively small concentration. Conclusion The present study set the basis for a better comprehension of the envenomation from a molecular perspective and, by increasing the interest and information available for this species, allows future venom comparisons among cobras and their diverse venom proteins.(AU)


Assuntos
Animais , Proteômica/classificação , Venenos Elapídicos/enzimologia
19.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484779

Resumo

Abstract King Cobra (Ophiophagus hannah) has a significant place in many cultures, and is a medically important venomous snake in the world. Envenomation by this snake is highly lethal, manifested mainly by neurotoxicity and local tissue damage. King Cobra may be part of a larger species complex, and is widely distributed across Southeast Asia, southern China, northern and eastern regions as well as the Western Ghats of India, indicating potential geographical variation in venom composition. There is, however, only one species-specific King Cobra antivenom available worldwide that is produced in Thailand, using venom from the snake of Thai origin. Issues relating to the management of King Cobra envenomation (e.g., variation in the composition and toxicity of the venom, limited availability and efficacy of antivenom), and challenges faced in the research of venom (in particular proteomics), are rarely addressed. This article reviews the natural history and sociocultural importance of King Cobra, cases of snakebite envenomation caused by this species, current practice of management (preclinical and clinical), and major toxinological studies of the venom with a focus on venom proteomics, toxicity and neutralization. Unfortunately, epidemiological data of King Cobra bite is scarce, and venom proteomes reported in various studies revealed marked discrepancies in details. Challenges, such as inconsistency in snake venom sampling, varying methodology of proteomic analysis, lack of mechanistic and antivenomic studies, and controversy surrounding antivenom use in treating King Cobra envenomation are herein discussed. Future directions are proposed, including the effort to establish a standard, comprehensive Pan-Asian proteomic database of King Cobra venom, from which the venom variation can be determined. Research should be undertaken to characterize the toxin antigenicity, and to develop an antivenom with improved efficacy and wider geographical utility. The endeavors are aligned with the WHO´s roadmap that aims to reduce the disease burden of snakebite by 50% before 2030.

20.
J. venom. anim. toxins incl. trop. dis ; 27: e20200047, 2021. tab, graf
Artigo em Inglês | VETINDEX, LILACS | ID: biblio-1287090

Resumo

The venom of the krait (Bungarus sindanus), an Elapidae snake, is highly toxic to humans and contains a great amount of acetylcholinesterase (AChE). The enzyme AChE provokes the hydrolysis of substrate acetylcholine (ACh) in the nervous system and terminates nerve impulse. Different inhibitors inactivate AChE and lead to ACh accumulation and disrupted neurotransmission. Methods: The present study was designed to evaluate the effect of palladium(II) complex as antivenom against krait venom AChE using kinetics methods. Results: Statistical analysis showed that krait venom AChE inhibition decreases with the increase of Pd(II) complex (0.025-0.05 µM) and exerted 61% inhibition against the AChE at a fixed concentration (0.5 mM) of ACh. Kinetic analysis using the Lineweaver Burk plot showed that Pd(II) caused a competitive inhibition. The compound Pd(II) complex binds at the active site of the enzyme. It was observed that K m (Michaelis-Menten constant of AChE-ACh into AChE and product) increased from 0.108 to 0.310 mM (45.74 to 318.35%) and V max remained constant with an increase of Pd(II) complex concentrations. In AChE K Iapp was found to increase from 0.0912 to 0.025 µM (29.82-72.58%) and did not affect the V maxapp with an increase of ACh from (0.05-1 mM). K i (inhibitory constant) was estimated to be 0.029µM for snake venom; while the K m was estimated to be 0.4 mM. The calculated IC50 for Pd(II) complex was found to be 0.043 µM at constant ACh concentration (0.5 mM). Conclusions: The results show that the Pd(II) complex can be deliberated as an inhibitor of AChE.(AU)


Assuntos
Animais , Bungarus , Venenos Elapídicos/toxicidade , Biologia Sintética , Paládio , Acetilcolinesterase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA