Resumo
Most energy used to operate agricultural machines in the field is generated from fossil fuel combustion. The combustion process emits atmospheric pollutants, increasing the emission of greenhouse gases (GHGs). In this context, this review is to discuss technologies for mitigating diesel engine GHG emissions to advance sustainable development in the agricultural machinery sector. This paper presents strategies and technologies widely adopted by agricultural machinery manufacturers in controlling pollutant emissions during fuel combustion. The findings of this study encompass sustainable alternative technologies, such as selective catalytic reduction, exhaust gas recirculation, diesel particulate filter, and fuels. This study helps reveal the environmental impact of agricultural field operations that generate GHG emissions.
Grande parte da energia utilizada para o funcionamento das máquinas agrícolas em suas operações no campo ainda é resultante da combustão de combustíveis fósseis. O processo de combustão provoca a emissão de poluentes atmosféricos que contribuem para o aumento dos Gases de Efeito Estufa (GEE). Neste contexto, esta revisão tem como objetivo descrever as tecnologias que contribuem para mitigar as emissões de GEE pelos motores de ciclo Diesel, a fim de contribuir para a compreensão e o desenvolvimento da sustentabilidade no setor de máquinas agrícolas. São apresentadas as estratégias e tecnologias que comumente estão sendo adotadas pelos fabricantes de máquinas agrícolas para o controle das emissões de poluentes, durante o processo de combustão do combustível. Os achados do estudo apresentam as alternativas tecnológicas sustentáveis como a Selective Catalytic Reduction, Exhaust Gas Recirculation, Diesel Particulate Filter, e sobre o uso de combustíveis alternativos. Ainda, contribui para o entendimento do impacto ambiental das operações agrícolas em campo, que provocam as emissões de GEE.
Assuntos
Automação , Combustíveis , Vazamento de Gases , Maquinaria , Gases de Efeito EstufaResumo
ABSTRACT: Most energy used to operate agricultural machines in the field is generated from fossil fuel combustion. The combustion process emits atmospheric pollutants, increasing the emission of greenhouse gases (GHGs). In this context, this review is to discuss technologies for mitigating diesel engine GHG emissions to advance sustainable development in the agricultural machinery sector. This paper presents strategies and technologies widely adopted by agricultural machinery manufacturers in controlling pollutant emissions during fuel combustion. The findings of this study encompass sustainable alternative technologies, such as selective catalytic reduction, exhaust gas recirculation, diesel particulate filter, and fuels. This study helps reveal the environmental impact of agricultural field operations that generate GHG emissions.
RESUMO: Grande parte da energia utilizada para o funcionamento das máquinas agrícolas em suas operações no campo ainda é resultante da combustão de combustíveis fósseis. O processo de combustão provoca a emissão de poluentes atmosféricos que contribuem para o aumento dos Gases de Efeito Estufa (GEE). Neste contexto, esta revisão tem como objetivo descrever as tecnologias que contribuem para mitigar as emissões de GEE pelos motores de ciclo Diesel, a fim de contribuir para a compreensão e o desenvolvimento da sustentabilidade no setor de máquinas agrícolas. São apresentadas as estratégias e tecnologias que comumente estão sendo adotadas pelos fabricantes de máquinas agrícolas para o controle das emissões de poluentes, durante o processo de combustão do combustível. Os achados do estudo apresentam as alternativas tecnológicas sustentáveis como a Selective Catalytic Reduction, Exhaust Gas Recirculation, Diesel Particulate Filter, e sobre o uso de combustíveis alternativos. Ainda, contribui para o entendimento do impacto ambiental das operações agrícolas em campo, que provocam as emissões de GEE.
Resumo
Based on previous reports, our study aimed to obtain the first estimate on the contribution of termite mounds to CH4 emissions in Brazilian Cerrado pastures. We estimated that termite mounds occupy an area larger than 200,000 ha in degraded pastures, an important loss of grazing area considering the current scenario of land-use change of pastures to other crops in Brazil. Moreover, mound-building termites in degraded pastures may be responsible for CH4 emissions greater than 11 Mt CO2 eq. yr−1, which would notably affect the greenhouse gases (GHG) balance of grass-fed cattle production in Brazil. In this sense, it is urgent to conduct field-scale studies about the CH4 emissions by mound-building termites in pastures and its contribution to the C footprint of Brazilian beef.
Assuntos
Pastagens , Isópteros/química , Gases de Efeito Estufa/análise , Metano/análise , BrasilResumo
Forest soils are N2O sources and commonly act as CH4 sinks. This study evaluated the dynamics of the CH4 and N2O fluxes of soils under Eucalyptus plantations and native Cerrado vegetation, as well as possible interactions between environmental factors and fluxes. The study was carried out in the Distrito Federal, Brazil, during 26 months, in three areas: in two stands of the hybrid Eucalyptus urophylla × Eucalyptus grandis, planted in 2011 (E1), and in 2009 (E2) and native Cerrado vegetation (CE). Measurements to determine the fluxes in a closed static chamber were carried out from Oct 2013 to Nov 2015. Soil and climate factors were monitored. During the study period, the mean CH4 fluxes were 22.48, 8.38 and 1.31 μg CH4 m2 h1 and the mean N2O fluxes 5.45, 4.85 and 3.85 μg N2O m2 h1 from E1, E2 and CE, respectively. Seasonality affected plantations in the studied sites. Cumulative CH4 influxes were calculated (year-1: 1.86 to -0.63 kg ha1 yr1; year-2: 1.85 to 1.34 kg ha1 yr1). Cumulative N2O fluxes in the three sites were ≤ 0.85 kg ha1 yr1. The change in land use from Cerrado to Eucalyptus plantations did not significantly changed regarding greenhouse gases (GHG), compared to the native vegetation. Flux rates of both gases (N2O and CH4) were low. Temporal variations in GHG fluxes and different ages of the stands did not cause significant differences in cumulative annual fluxes.
Assuntos
Eucalyptus/química , Gases de Efeito Estufa , Metano , Árvores/química , Óxido Nitroso , BrasilResumo
Forest soils are N2O sources and commonly act as CH4 sinks. This study evaluated the dynamics of the CH4 and N2O fluxes of soils under Eucalyptus plantations and native Cerrado vegetation, as well as possible interactions between environmental factors and fluxes. The study was carried out in the Distrito Federal, Brazil, during 26 months, in three areas: in two stands of the hybrid Eucalyptus urophylla × Eucalyptus grandis, planted in 2011 (E1), and in 2009 (E2) and native Cerrado vegetation (CE). Measurements to determine the fluxes in a closed static chamber were carried out from Oct 2013 to Nov 2015. Soil and climate factors were monitored. During the study period, the mean CH4 fluxes were 22.48, 8.38 and 1.31 μg CH4 m2 h1 and the mean N2O fluxes 5.45, 4.85 and 3.85 μg N2O m2 h1 from E1, E2 and CE, respectively. Seasonality affected plantations in the studied sites. Cumulative CH4 influxes were calculated (year-1: 1.86 to -0.63 kg ha1 yr1; year-2: 1.85 to 1.34 kg ha1 yr1). Cumulative N2O fluxes in the three sites were ≤ 0.85 kg ha1 yr1. The change in land use from Cerrado to Eucalyptus plantations did not significantly changed regarding greenhouse gases (GHG), compared to the native vegetation. Flux rates of both gases (N2O and CH4) were low. Temporal variations in GHG fluxes and different ages of the stands did not cause significant differences in cumulative annual fluxes.(AU)
Assuntos
Eucalyptus/química , Metano , Óxido Nitroso , Gases de Efeito Estufa , Árvores/química , BrasilResumo
Rice is the second-most produced cereal worldwide and actively contributes to greenhouse gas (GHG) emissions, particularly methane, especially under deepwater production. Assessments of energy efficiency (EE) and GHG emissions can indicate the sustainability level of agrosystems and support decisions related to the reduction of production costs and environmental pollution. This study aimed to assess both EE and GHG emissions in organic and conventional rice production in the Southern region of Brazil. For this study, eight rice fields were evaluated. Energy inputs and outputs were calculated by multiplying the production input amounts by their respective calorific values or energy coefficients at each stage of production. EE was determined using the ratio between the total energy output and the total energy consumed during the production process. GHG emissions were estimated using the principles of the lifecycle assessment methodology in addition to the Intergovernmental Panel on Climate Change (IPCC) recommendations. Each 1.0 MJ consumed during the production of organic and conventional rice produced renewable energy averages of 10.5 MJ and 7.90 MJ, respectively, as grains. The primary energy expenses for organic rice were represented by seeds, fuel, tractors, and agricultural machinery and implements, and those for conventional rice were seeds, fuel, and fertilizers. Each kilogram of organic and conventional rice produced accounted for the emission of 0.21 and 0.32 kg of CO2eq, respectively, during the production cycles and delivery to the warehouse, with seeds, fuel, and fertilizers being the main sources of CO2eq emissions to the atmosphere.
O arroz é o segundo cereal mais cultivado no mundo e contribui ativamente nas emissões de GEE, principalmente em áreas produzidas sob inundação, com destaque para a produção de gás metano. A eficiência energética (EE) e as emissões de gases de efeito estufa (GEE) podem indicar o nível de sustentabilidade dos agrossistemas e a tomada de decisões relativas à redução dos custos de produção e poluição do ambiente. O objetivo deste trabalho foi avaliar a EE e emissões de GEE nas culturas do arroz sob cultivo orgânico e convencional na região sul do Brasil. Para isso, foram avaliadas oito áreas de arroz. As entradas e saídas de energia foram calculadas pela multiplicação da quantidade de produtos utilizados para a produção de arroz pelos seus respectivos poderes caloríficos ou coeficientes energéticos em cada etapa de produção. A EE foi obtida pela razão entre a quantidade de energia total de saída e o consumo total de energia durante o processo produtivo. Para estimar a emissão de GEE, foram aplicados princípios da metodologia de avaliação do ciclo de vida e recomendações do Painel Intergovernamental sobre Mudanças Climáticas (IPCC). Para cada 1,0 MJ de energia consumida na produção orgânica de arroz sob os sistemas orgânico e convencional, se produziram respectivamente em média, 10,5 MJ e 7,90 MJ de energia renovável, na forma de grãos. Os principais gastos energéticos no arroz orgânico foram com sementes, combustível, tratores, máquinas e implementos agrícolas e para o arroz convencional foram sementes, combustível e fertilizantes. Para cada 1 kg de grãos dos sistemas orgânicos e convencional são emitidos respectivamente 0,21 e 0,32 kg de CO2eq durante seus ciclos de produção e entrega no armazém, sendo as sementes, combustíveis e fertilizantes as principais fontes de emissão de CO2eq à atmosfera.
Assuntos
Dióxido de Carbono/efeitos adversos , Efeito Estufa , Metano/efeitos adversos , Oryza , Vazamento de Gases/efeitos adversos , Óxido Nitroso/efeitos adversosResumo
Rice is the second-most produced cereal worldwide and actively contributes to greenhouse gas (GHG) emissions, particularly methane, especially under deepwater production. Assessments of energy efficiency (EE) and GHG emissions can indicate the sustainability level of agrosystems and support decisions related to the reduction of production costs and environmental pollution. This study aimed to assess both EE and GHG emissions in organic and conventional rice production in the Southern region of Brazil. For this study, eight rice fields were evaluated. Energy inputs and outputs were calculated by multiplying the production input amounts by their respective calorific values or energy coefficients at each stage of production. EE was determined using the ratio between the total energy output and the total energy consumed during the production process. GHG emissions were estimated using the principles of the lifecycle assessment methodology in addition to the Intergovernmental Panel on Climate Change (IPCC) recommendations. Each 1.0 MJ consumed during the production of organic and conventional rice produced renewable energy averages of 10.5 MJ and 7.90 MJ, respectively, as grains. The primary energy expenses for organic rice were represented by seeds, fuel, tractors, and agricultural machinery and implements, and those for conventional rice were seeds, fuel, and fertilizers. Each kilogram of organic and conventional rice produced accounted for the emission of 0.21 and 0.32 kg of CO2eq, respectively, during the production cycles and delivery to the warehouse, with seeds, fuel, and fertilizers being the main sources of CO2eq emissions to the atmosphere.(AU)
O arroz é o segundo cereal mais cultivado no mundo e contribui ativamente nas emissões de GEE, principalmente em áreas produzidas sob inundação, com destaque para a produção de gás metano. A eficiência energética (EE) e as emissões de gases de efeito estufa (GEE) podem indicar o nível de sustentabilidade dos agrossistemas e a tomada de decisões relativas à redução dos custos de produção e poluição do ambiente. O objetivo deste trabalho foi avaliar a EE e emissões de GEE nas culturas do arroz sob cultivo orgânico e convencional na região sul do Brasil. Para isso, foram avaliadas oito áreas de arroz. As entradas e saídas de energia foram calculadas pela multiplicação da quantidade de produtos utilizados para a produção de arroz pelos seus respectivos poderes caloríficos ou coeficientes energéticos em cada etapa de produção. A EE foi obtida pela razão entre a quantidade de energia total de saída e o consumo total de energia durante o processo produtivo. Para estimar a emissão de GEE, foram aplicados princípios da metodologia de avaliação do ciclo de vida e recomendações do Painel Intergovernamental sobre Mudanças Climáticas (IPCC). Para cada 1,0 MJ de energia consumida na produção orgânica de arroz sob os sistemas orgânico e convencional, se produziram respectivamente em média, 10,5 MJ e 7,90 MJ de energia renovável, na forma de grãos. Os principais gastos energéticos no arroz orgânico foram com sementes, combustível, tratores, máquinas e implementos agrícolas e para o arroz convencional foram sementes, combustível e fertilizantes. Para cada 1 kg de grãos dos sistemas orgânicos e convencional são emitidos respectivamente 0,21 e 0,32 kg de CO2eq durante seus ciclos de produção e entrega no armazém, sendo as sementes, combustíveis e fertilizantes as principais fontes de emissão de CO2eq à atmosfera.(AU)
Assuntos
Oryza , Vazamento de Gases/efeitos adversos , Dióxido de Carbono/efeitos adversos , Metano/efeitos adversos , Óxido Nitroso/efeitos adversos , Efeito EstufaResumo
The objective of this study was to evaluate natamycin, Lactobacillus buchneri (LB), or their combination on the chemical composition, loss, fermentative profile, and aerobic stability as well as gas production and composition of sugarcane silages. The treatments were (wet basis): no additive (control), 10 g t−1 of natamycin (N10), 5 × 104 cfu g−1 of LB, and the combination of 4 g t−1 of natamycin and 2.5 × 104 cfu g−1 of LB (NLB). Sugarcane was chopped (10 mm), treated with the additives, and ensiled in experimental silos (four replicates). The silos remained stored for 51 days. The LB inoculation, alone or in combination with natamycin, increased the acetic acid content (by 105 and 78% respectively) and decreased ethanol content (by 83 and 71% respectively) when compared to N10 treatment and the control. A decrease in both dry matter and gas losses was observed in the LB (by 72 and 78%, respectively) and N10 (by 69 and 77%, respectively) silages compared with the control, but not the combination. The N10 treatment reduced greenhouse gas (GHG) emission by 86% compared with the control silage. Control and N10 silages deteriorated to the same extent with aerobic exposure, whereas LB and NLB presented higher aerobic stability. The use of natamycin alone is not recommended when ethanol and aerobic stability are concerns. However, natamycin may be considered for the composition of blend additives to decrease greenhouse gas emission and fermentative loss in silages. Further studies must be carried out to optimize doses of natamycin in blend additives.(AU)
Assuntos
Silagem/análise , Natamicina/efeitos adversos , Gases de Efeito Estufa/análise , Excipientes Farmacêuticos/análise , Saccharum/químicaResumo
The objectives of this study were to examine the trends of greenhouse gas (GHG) emission intensity (EI) from livestock sector in Indonesia, and also to suggest mitigation measures for the emissions. GHG emissions were calculated by using 2006 Intergovernmental Panel on Climate Change Guideline (2006 IPCC GL) Tier 1 method based on carbon dioxide equivalent (CO2eq) with default values except for Indonesian livestock population. GHG EI (emissions intensity) of livestock sector in Indonesia was calculated by dividing total GHG emissions by Indonesian meat production from livestock commodities. In 2015, beef cattle contributed 66.99% from total GHG emissions from livestock sector, followed by goat (8.38%), sheep (7.40%), buffalo (6.89%), swine (5.03%), broiler chicken (3.80%), and horse (0.72%). However, in 2015, buffalo showed the highest EI (kgCO2eq/kg meat) by 6.44, followed by beef cattle (5.88), sheep (4.69), goat (4.07), swine (3.50), horse (3.09), and broiler chicken (0.38). EIs from swine, goat, sheep, broiler chicken, horse, beef cattle, and buffalo decreased by 60.77%, 58.59%, 46.68%, 21.30%, 18.15%, 19.94%, and 13.13% from 2000 to 2015, respectively. Results of GHG emissions and GHG EIs from each livestock category in Indonesia shown the improvement direction in order to mitigate GHG emission. Therefore, Indonesian government should focus on the beef cattle and buffalo that are a high contribution on GHG emissions and high EI by increasing the efficiency of livestock rearing management such as livestock health, genetic, diets, and environment.(AU)
Assuntos
Criação de Animais Domésticos , Gases de Efeito Estufa/análise , Gases de Efeito Estufa/prevenção & controle , Indústria Agropecuária , Indonésia , Mudança Climática , 34691Resumo
The objectives of this study were to examine the trends of greenhouse gas (GHG) emission intensity (EI) from livestock sector in Indonesia, and also to suggest mitigation measures for the emissions. GHG emissions were calculated by using 2006 Intergovernmental Panel on Climate Change Guideline (2006 IPCC GL) Tier 1 method based on carbon dioxide equivalent (CO2eq) with default values except for Indonesian livestock population. GHG EI (emissions intensity) of livestock sector in Indonesia was calculated by dividing total GHG emissions by Indonesian meat production from livestock commodities. In 2015, beef cattle contributed 66.99% from total GHG emissions from livestock sector, followed by goat (8.38%), sheep (7.40%), buffalo (6.89%), swine (5.03%), broiler chicken (3.80%), and horse (0.72%). However, in 2015, buffalo showed the highest EI (kgCO2eq/kg meat) by 6.44, followed by beef cattle (5.88), sheep (4.69), goat (4.07), swine (3.50), horse (3.09), and broiler chicken (0.38). EIs from swine, goat, sheep, broiler chicken, horse, beef cattle, and buffalo decreased by 60.77%, 58.59%, 46.68%, 21.30%, 18.15%, 19.94%, and 13.13% from 2000 to 2015, respectively. Results of GHG emissions and GHG EIs from each livestock category in Indonesia shown the improvement direction in order to mitigate GHG emission. Therefore, Indonesian government should focus on the beef cattle and buffalo that are a high contribution on GHG emissions and high EI by increasing the efficiency of livestock rearing management such as livestock health, genetic, diets, and environment.
Assuntos
Criação de Animais Domésticos , Gases de Efeito Estufa/análise , Gases de Efeito Estufa/prevenção & controle , Indústria Agropecuária , 34691 , Indonésia , Mudança ClimáticaResumo
The use of crop residues as a bioenergy feedstock is considered a potential strategy to mitigate greenhouse gas (GHG) emissions. However, indiscriminate harvesting of crop residues can induce deleterious effects on soil functioning, plant growth and other ecosystem services. Here, we have summarized the information available in the literature to identify and discuss the main trade-offs and synergisms involved in crop residue management for bioenergy production. The data consistently showed that crop residue harvest and the consequent lower input of organic matter into the soil led to C storage depletions over time, reducing cycling, supply and availability of soil nutrients, directly affecting the soil biota. Although the biota regulates key functions in the soil, crop residue can also cause proliferation of some important agricultural pests. In addition, crop residues act as physical barriers that protect the soil against raindrop impact and temperature variations. Therefore, intensive crop residue harvest can cause soil structure degradation, leading to soil compaction and increased risks of erosion. With regard to GHG emissions, there is no consensus about the potential impact of management of crop residue harvest. In general, residue harvest decreases CO2 and N2O emissions from the decomposition process, but it has no significant effect on CH4 emissions. Plant growth responses to soil and microclimate changes due to crop residue harvest are site and crop specific. Adoption of the best management practices can mitigate the adverse impacts of crop residue harvest. Longterm experiments within strategic production regions are essential to understand and monitor the impact of integrated agricultural systems and propose customized solutions for sustainable crop residue management in each region or landscape. Furthermore, private and public investments/cooperations are necessary for a better understanding of the potential environmental...
Assuntos
Gases de Efeito Estufa , Qualidade do Solo , Saccharum/química , Uso de Resíduos Sólidos , Produtos Agrícolas , ReciclagemResumo
The use of crop residues as a bioenergy feedstock is considered a potential strategy to mitigate greenhouse gas (GHG) emissions. However, indiscriminate harvesting of crop residues can induce deleterious effects on soil functioning, plant growth and other ecosystem services. Here, we have summarized the information available in the literature to identify and discuss the main trade-offs and synergisms involved in crop residue management for bioenergy production. The data consistently showed that crop residue harvest and the consequent lower input of organic matter into the soil led to C storage depletions over time, reducing cycling, supply and availability of soil nutrients, directly affecting the soil biota. Although the biota regulates key functions in the soil, crop residue can also cause proliferation of some important agricultural pests. In addition, crop residues act as physical barriers that protect the soil against raindrop impact and temperature variations. Therefore, intensive crop residue harvest can cause soil structure degradation, leading to soil compaction and increased risks of erosion. With regard to GHG emissions, there is no consensus about the potential impact of management of crop residue harvest. In general, residue harvest decreases CO2 and N2O emissions from the decomposition process, but it has no significant effect on CH4 emissions. Plant growth responses to soil and microclimate changes due to crop residue harvest are site and crop specific. Adoption of the best management practices can mitigate the adverse impacts of crop residue harvest. Longterm experiments within strategic production regions are essential to understand and monitor the impact of integrated agricultural systems and propose customized solutions for sustainable crop residue management in each region or landscape. Furthermore, private and public investments/cooperations are necessary for a better understanding of the potential environmental...(AU)
Assuntos
Qualidade do Solo , Uso de Resíduos Sólidos , Gases de Efeito Estufa , Saccharum/química , Reciclagem , Produtos AgrícolasResumo
In this study, eight different manure treatment plants were monitored. The plants were four on-farm and four centralized treatment plants, all of them at full-scale level. Assessment includes a total of seven pre-treatment and process units as follows: mechanical separation, with and without coagulant and flocculant addition, pasteurization, nitrification-denitrification, anaerobic digestion, and composting. The plants are located in nutrient surplus areas of three European Member States (Spain, Italy and Denmark), the majority of these areas being Nitrate Vulnerable Zones (NVZ). Results presented herein are data collected over a six-month period and comprise performance data of the treatment plants, pathogen indicators (E.coli and Salmonella) and greenhouse gas (GHG) emissions data under two scenarios: 1) the baseline scenario and 2) the treatment plant scenario. The assessment includes GHG emissions of the storage facilities, transportation, and subsequent intermediate storage, electric consumption, electric production, composting, and land application. All treatment plants studied generated a significant reduction in GHG emissions (between 53 and 90 %) in comparison to the baseline scenario. Organic matter and total solids (TS) content in manure were also greatly reduced, with values ranging between 35-53 % of chemical oxygen demand (COD) and, 24-61 % of TS for anaerobic digestion (AD) treatment plants, 77-93 % COD and 70 % TS in the case of AD combined with nitrogen (N)-removal unit plants. Nitrogen concentrations were also greatly reduced (between 65-85 %) total Kjeldahl nitrogen (TKN) and 68-83 % ammonium (NH4+-N)) in plants with N-removal units.
Assuntos
Esterco , Gases , Matéria Orgânica , Suínos , Compostagem , Desnitrificação , Digestão Anaeróbia , Efeito Estufa , NitrificaçãoResumo
In this study, eight different manure treatment plants were monitored. The plants were four on-farm and four centralized treatment plants, all of them at full-scale level. Assessment includes a total of seven pre-treatment and process units as follows: mechanical separation, with and without coagulant and flocculant addition, pasteurization, nitrification-denitrification, anaerobic digestion, and composting. The plants are located in nutrient surplus areas of three European Member States (Spain, Italy and Denmark), the majority of these areas being Nitrate Vulnerable Zones (NVZ). Results presented herein are data collected over a six-month period and comprise performance data of the treatment plants, pathogen indicators (E.coli and Salmonella) and greenhouse gas (GHG) emissions data under two scenarios: 1) the baseline scenario and 2) the treatment plant scenario. The assessment includes GHG emissions of the storage facilities, transportation, and subsequent intermediate storage, electric consumption, electric production, composting, and land application. All treatment plants studied generated a significant reduction in GHG emissions (between 53 and 90 %) in comparison to the baseline scenario. Organic matter and total solids (TS) content in manure were also greatly reduced, with values ranging between 35-53 % of chemical oxygen demand (COD) and, 24-61 % of TS for anaerobic digestion (AD) treatment plants, 77-93 % COD and 70 % TS in the case of AD combined with nitrogen (N)-removal unit plants. Nitrogen concentrations were also greatly reduced (between 65-85 %) total Kjeldahl nitrogen (TKN) and 68-83 % ammonium (NH4+-N)) in plants with N-removal units.(AU)
Assuntos
Suínos , Esterco , Matéria Orgânica , Gases , Efeito Estufa , Digestão Anaeróbia , Compostagem , Nitrificação , DesnitrificaçãoResumo
Climate change is a subject of global environmental concern. Increased anthropogenic Greenhouse Gas (GHG) emissions have increased the global temperature the last 100 to 200 years. Carbon dioxide and methane are the main greenhouse gases related to animal nutrition and methane has greater global warming potential than carbon dioxide. Among greenhouse gases, methane is considered a potent greenhouse gas with 21 times more global warming potential than carbon dioxide. Worldwide, ruminant livestock produce about 80 million metric tons of methane each year, accounting for about 28% of global emissions from human related activities. Therefore it is impelling animal scientists to finding solutions to mitigate methane emission from ruminants. It seems that solutions can be discussed in four topics including: nutrition (feeding), biotechnology, microbiology and management strategies. We have already published the first and second review articles on feeding strategies and management strategies. In the current review, Microbiology and biotechnology such as emphasizing on animal breeding, genetic merit, bovine somatotropin (BST), unproductive animals, vaccination, immunisation and biological control (bacteriophage, acetogenesis reductive), chemical defaunation that can be leads to decreasing methane production from ruminant animal production are discussed.(AU)
A mudança climática é um assunto de preocupação ambiental global. O aumento dos gases de estufa antropogênicos (GEA) tem elevado a temperatura global nos últimos 100 a 200 anos. O dióxido de carbono e metano são os principais gases do efeito estufa e estão relacionados com a nutrição animal, onde o metano tem maior potencial de aquecimento global do que o dióxido de carbono. Entre os gases do efeito estufa, o metano é considerado um gás 21 vezes com maior potencial de aquecimento global do que o dióxido de carbono. Em todo o mundo, animais ruminantes produzem cerca de 80 milhões de toneladas de metano por ano, respondendo por cerca de 28% das emissões globais das atividades humanas relacionadas. Por isso é impelindo aos zootecnistas encontrar soluções para mitigar emissões de metano a partir de ruminantes. Parece que as soluções podem ser discutidas em quatro temas, incluindo: nutrição (alimentação), biotecnologia, microbiologia e estratégias de gestão. Nós já publicamos o primeiro e segundo artigos de revisão sobre estratégias de alimentação e estratégias de gestão. Na avaliação atual, microbiologia e biotecnologia, tal como com ênfase na criação de animais, mérito genético, somatotropina bovina (BST), animais improdutivos, vacinação, imunização e controle biológico (bacteriófago, acetogênese redutora), defaunação química que pode conduz à diminuição da produção de metano na produção de ruminantes são discutidos.(AU)
Assuntos
Animais , Ruminantes , Metano , Efeito Estufa , Vazamento de Gases , Mudança ClimáticaResumo
Climate change is a subject of global environmental concern. Increased anthropogenic Greenhouse Gas (GHG) emissions have increased the global temperature the last 100 to 200 years. Carbon dioxide and methane are the main greenhouse gases related to animal nutrition and methane has greater global warming potential than carbon dioxide. Among greenhouse gases, methane is considered a potent greenhouse gas with 21 times more global warming potential than carbon dioxide. Worldwide, ruminant livestock produce about 80 million metric tons of methane each year, accounting for about 28% of global emissions from human related activities. Therefore it is impelling animal scientists to finding solutions to mitigate methane emission from ruminants. It seems that solutions can be discussed in four topics including: nutrition (feeding), biotechnology, microbiology and management strategies. We have already published the first and second review articles on feeding strategies and management strategies. In the current review, Microbiology and biotechnology such as emphasizing on animal breeding, genetic merit, bovine somatotropin (BST), unproductive animals, vaccination, immunisation and biological control (bacteriophage, acetogenesis reductive), chemical defaunation that can be leads to decreasing methane production from ruminant animal production are discussed.
A mudança climática é um assunto de preocupação ambiental global. O aumento dos gases de estufa antropogênicos (GEA) tem elevado a temperatura global nos últimos 100 a 200 anos. O dióxido de carbono e metano são os principais gases do efeito estufa e estão relacionados com a nutrição animal, onde o metano tem maior potencial de aquecimento global do que o dióxido de carbono. Entre os gases do efeito estufa, o metano é considerado um gás 21 vezes com maior potencial de aquecimento global do que o dióxido de carbono. Em todo o mundo, animais ruminantes produzem cerca de 80 milhões de toneladas de metano por ano, respondendo por cerca de 28% das emissões globais das atividades humanas relacionadas. Por isso é impelindo aos zootecnistas encontrar soluções para mitigar emissões de metano a partir de ruminantes. Parece que as soluções podem ser discutidas em quatro temas, incluindo: nutrição (alimentação), biotecnologia, microbiologia e estratégias de gestão. Nós já publicamos o primeiro e segundo artigos de revisão sobre estratégias de alimentação e estratégias de gestão. Na avaliação atual, microbiologia e biotecnologia, tal como com ênfase na criação de animais, mérito genético, somatotropina bovina (BST), animais improdutivos, vacinação, imunização e controle biológico (bacteriófago, acetogênese redutora), defaunação química que pode conduz à diminuição da produção de metano na produção de ruminantes são discutidos.
Assuntos
Animais , Efeito Estufa , Metano , Ruminantes , Vazamento de Gases , Mudança ClimáticaResumo
We evaluated the productive chain of fish consumed in the State of Bahia using Life Cycle Analysis (LCA). We estimated the inputs and outputs from logistics and fish processing. For every kg of processed and transported fish we calculated the Global Warming Potential (GWP) based on the amount of Greenhouse Gases (GHG) given in kg of CO2eq, as follows: 0.020 electricity; 0.003 water consumption; 0.002 wastewater; 0.160 and 1.495 waste from the gutted and filleted fish, respectively; 0.871 and 1.007 refrigerated transportation of gutted and filleted fish, respectively. The sum of GHG emissions were 1.058 and 2.592 kg of CO2eq per kg of gutted and filleted fish, respectively. LCA results indicate that it is possible to reduce the GWP associated with refrigerated transportation by increasing local fish production and decreasing importation, especially given the available water potential of Bahia. However, to achieve a sustainable production it is imperative to adopt and also develop technologies that promote environmental impact reduction from solid residues.(AU)
Avaliamos a cadeia produtiva do pescado consumido no Estado da Bahia utilizando a Análise de Ciclo de Vida (ACV). Estimamos os consumos e emissões associados à logística e ao processamento do peixe. O Potencial de Aquecimento Global (PAG) foi calculado com base na quantidade de Gases Efeito Estufa (GEE) indicadas por kg de CO2eq para cada kg de peixe processado foram: 0,020 - eletricidade; 0,003 consumo de água; 0,0029 efluentes; 0,160 e 1,495 resíduos sólidos para os peixes eviscerados e filetados, respectivamente, e 0,871 e 1,007 transporte refrigerado dos peixes eviscerados e filetados, respectivamente. O somatório do impacto das emissões de GEE foram 1,058 e 2,529 kg de CO2eq por kg de peixe eviscerado e filetado, respectivamente. Os resultados indicaram que é possível reduzir o PAG do transporte refrigerado com o aumento da produção local de peixe e redução das importações, especialmente considerando o potencial hídrico da Bahia. Entretanto, a produção sustentável requer a adoção e desenvolvimento de tecnologias para reduzir os impactos ambientais do tratamento dos resíduos sólidos da etapa de processamento.(AU)
Assuntos
Animais , Indústria Pesqueira , Aquicultura/estatística & dados numéricos , Resíduos de Alimentos , Meio AmbienteResumo
We evaluated the productive chain of fish consumed in the State of Bahia using Life Cycle Analysis (LCA). We estimated the inputs and outputs from logistics and fish processing. For every kg of processed and transported fish we calculated the Global Warming Potential (GWP) based on the amount of Greenhouse Gases (GHG) given in kg of CO2eq, as follows: 0.020 electricity; 0.003 water consumption; 0.002 wastewater; 0.160 and 1.495 waste from the gutted and filleted fish, respectively; 0.871 and 1.007 refrigerated transportation of gutted and filleted fish, respectively. The sum of GHG emissions were 1.058 and 2.592 kg of CO2eq per kg of gutted and filleted fish, respectively. LCA results indicate that it is possible to reduce the GWP associated with refrigerated transportation by increasing local fish production and decreasing importation, especially given the available water potential of Bahia. However, to achieve a sustainable production it is imperative to adopt and also develop technologies that promote environmental impact reduction from solid residues.
Avaliamos a cadeia produtiva do pescado consumido no Estado da Bahia utilizando a Análise de Ciclo de Vida (ACV). Estimamos os consumos e emissões associados à logística e ao processamento do peixe. O Potencial de Aquecimento Global (PAG) foi calculado com base na quantidade de Gases Efeito Estufa (GEE) indicadas por kg de CO2eq para cada kg de peixe processado foram: 0,020 - eletricidade; 0,003 consumo de água; 0,0029 efluentes; 0,160 e 1,495 resíduos sólidos para os peixes eviscerados e filetados, respectivamente, e 0,871 e 1,007 transporte refrigerado dos peixes eviscerados e filetados, respectivamente. O somatório do impacto das emissões de GEE foram 1,058 e 2,529 kg de CO2eq por kg de peixe eviscerado e filetado, respectivamente. Os resultados indicaram que é possível reduzir o PAG do transporte refrigerado com o aumento da produção local de peixe e redução das importações, especialmente considerando o potencial hídrico da Bahia. Entretanto, a produção sustentável requer a adoção e desenvolvimento de tecnologias para reduzir os impactos ambientais do tratamento dos resíduos sólidos da etapa de processamento.
Assuntos
Animais , Aquicultura/estatística & dados numéricos , Indústria Pesqueira , Resíduos de Alimentos , Meio AmbienteResumo
A intensificação da produção em pastagens ocasionou o aumento do uso de fertilizantes nitrogenados, prática que merece atenção devido ao alto potencial de perda de nitrogênio (N) por volatilização, e que também pode alterar os fluxos de gases de efeito estufa (GEE) do solo como o dióxido de carbono (CO2), óxido nitroso (N2O) e metano (CH4). A magnitude dessas emissões em pastagens tropicais ainda é pouco conhecida e o entendimento dos fatores que as modificam pode ajudar a mitigar a emissão de GEE e melhorar a eficiência da fertilização com N. O objetivo desta pesquisa foi investigar os efeitos de três fertilizantes (ureia, sulfato de amônio e nitrato de amônio) aplicados de forma única e parcelada, e quatro doses (0, 90, 180 e 270 kg ha-1 ano-1) de N, nos fluxos de CO2, N2O e CH4, na volatilização de amônia (NH3) e nas características produtivas e químicas da forragem em pastagem de capim U. brizantha cv Marandu. A captação do N perdido como NH3 foi realizada de acordo com a técnica de câmaras semi-abertas. Para avaliação da forragem, foram feitas parcelas de 3x4 m manejadas em regime de cortes a uma altura de dossel de 30 cm e resíduo de 15 cm e realizadas as análises químicas de proteína bruta (PB), fibra em detergente ácido (FDN) e fibra em detergente neutro (FDA). As emissões de GEE foram medidas usando câmaras estáticas fechadas e as análises dos gases realizadas por cromatografia gasosa. As perdas por volatilização de NH3 provenientes dos fertilizantes com N nas formas nítrica e amoniacal foram menores que a da ureia, e o parcelamento da fertilização reduziu em média 47% as perdas de N. A fertilização nitrogenada aumentou linearmente o acúmulo de forragem apresentando médias de 232, 264, 285 e 304 kg ha-1 dia-1 nas doses de 0, 90, 180 e 270 kg ha-1 ano-1, respectivamente. Os teores de PB e FDN aumentaram linearmente com o aumento das doses de N. Os fatores de emissão (FE) de NH3 foram de 20,69; 3,70 e 2,82% nos fertilizantes ureia, nitrato e sulfato de amônio, respectivamente, diferindo dos padrões estabelecidos pelo IPCC. Os fluxos de N2O, CH4 e CO2 do solo não variaram em função dos fertilizantes e doses de N. Os fluxos de GEE diferiram em função das condições climáticas e as principais variáveis determinantes que controlam as emissões foram espaços porosos saturados com água (%EPSA), temperatura e teor de (N amoniacal) N-NH4+. Os FE de N2O foram 0,35; 0,24 e 0,21% nos fertilizantes ureia, nitrato e sulfato de amônio, quando a fertilização foi parcelada, diferindo do FE padrão do IPCC. As condições ambientais impactaram diretamente nas respostas da planta e dos gases. A utilização de fertilizantes alternativos a ureia pode diminuir as perdas de N por volatilização e aumentar o acúmulo de forragem, ao passo que, o fracionamento da fertilização, além de diminuir perdas de NH3 reduzem as emissões de N2O, mostrando-se uma alternativa para a mitigação de GEE.
The intensification of pasture production increased nitrogen (N) fertilizers use. A practice that deserves attention due to the high potential for N loss through volatilization, which can also alter the fluxes of greenhouse gases (GHG) from the soil, such as dioxide carbon (CO2), nitrous oxide (N2O), and methane (CH4). The magnitude of these emissions in tropical pastures is still poorly understood. Understanding the factors that modify them may help mitigate GHG emissions and improve the N fertilization efficiency. The objective of this research was to investigate the effects of different sources (urea, ammonium sulfate and ammonium nitrate) applied in a unique and parceled way, and doses (0, 90, 180 and 270 kg ha-1 year-1) of N, in the CO2, N2O, and CH4 fluxes, in the ammonia (NH3) volatilization and in the forage production and chemical characteristics in pasture of U. brizantha cv Marandu grass. The capture of N lost as NH3 volatilized was performed according to the semi-open chamber technique. For forage evaluation, plots of 3x4 m were managed in a cutting regime at a canopy height of 30 cm and stubble height of 15 cm and the chemical analysis of crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) were performed. Greenhouse gases emissions were measured using closed static chambers and gas analysis performed by gas chromatography. Ammonia volatilization from nitrate and ammonium were lower than urea, and parceled fertilization reduced on average 47% N losses. Nitrogen fertilizer linearly increased forage accumulation (232, 264, 285, and 304 kg ha-1 day-1 at doses of 0, 90, 180, and 270 kg ha-1 year-1, respectively. The contents of CP and NDF were significantly affected by increasing doses of N, with linear effect of the two variables. The emission factors (EF) of NH3 were 20.69, 3.70, and 2.82% for urea, nitrate, and ammonium sulfate, respectively, differing from the default value estimated by the IPCC. Soil N2O, CH4, and CO2 fluxes did not vary as a function of N sources and doses. The GHG fluxes differed depending on climatic conditions and the main determinant variables controlling emissions were water filled pore spaces (%WFPS), temperature, and (amoniacal N) NH4-N content. The EF of N2O were 0.35, 0.24, and 0.21% in urea, nitrate and ammonium sulfate fertilizers when fertilization was applied in split doses, differing from the IPCC standard EF. Environmental conditions directly impacted plant and gas responses. The use of alternative sources to urea can decrease N losses by NH3 volatilization and increase forage accumulation, while split fertilization, besides decreasing NH3 losses, reduces N2O emissions, proving to be an alternative for GHG mitigation.
Resumo
Water management impacts both methane (CH4) and nitrous oxide (N2O) emissions from rice paddy fields. Although controlled irrigation is one of the most important tools for reducing CH4emission in rice production systems it can also increase N2O emissions and reduce crop yields. Over three years, CH4 and N2O emissions were measured in a rice field in Uruguay under two different irrigation management systems, using static closed chambers: conventional water management (continuous flooding after 30 days of emergence, CF30); and an alternative system (controlled deficit irrigation allowing for wetting and drying, AWDI). AWDI showed mean cumulative CH4 emission values of 98.4 kg CH4 ha1, 55 % lower compared to CF30, while no differences in nitrous oxide emissions were observed between treatments ( p > 0.05). No yield differences between irrigation systems were observed in two of the rice seasons ( p > 0.05) while AWDI promoted yield reduction in one of the seasons ( p 0.05). When rice yield and greenhouse gases (GHG) emissions were considered together, the AWDI irrigation system allowed for lower yield-scaled total global warming potential (GWP). Higher irrigation water productivity was achieved under AWDI in two of the three rice seasons. These findings suggest that AWDI could be an option for reducing GHG emissions and increasing irrigation water productivity. However, AWDI may compromise grain yield in certain years, reflecting the importance of the need for fine tuning of this irrigation strategy and an assessment of the overall tradeoff between relationships in order to promote its adoption by farmers.