Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J. venom. anim. toxins incl. trop. dis ; 29: e20220080, 2023. tab, graf, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1448597

Resumo

Background: Bungarus multicinctus is one of the most dangerous venomous snakes prone to cardiopulmonary damage with extremely high mortality. In our previous work, we found that glutamine (Gln) and glutamine synthetase (GS) in pig serum were significantly reduced after Bungarus multicinctus bite. In the present study, to explore whether there is a link between the pathogenesis of cardiopulmonary injury and Gln metabolic changes induced by Bungarus multicinctus venom. We investigated the effect of Gln supplementation on the lung and heart function after snakebite. Methods: We supplemented different concentrations of Gln to mice that were envenomated by Bungarus multicinctus to observe the biological behavior, survival rate, hematological and pathological changes. Gln was supplemented immediately or one hour after the venom injection, and then changes in Gln metabolism were analyzed. Subsequently, to further explore the protective mechanism of glutamine on tissue damage, we measured the expression of heat-shock protein70 (HSP70), NF-κB P65, P53/PUMA by western blotting and real-time polymerase in the lung and heart. Results: Gln supplementation delayed the envenoming symptoms, reduced mortality, and alleviated the histopathological changes in the heart and lung of mice bitten by Bungarus multicinctus. Additionally, Gln increased the activity of glutamine synthetase (GS), glutamate dehydrogenase (GDH) and glutaminase (GLS) in serum. It also balanced the transporter SLC7A11 expression in heart and lung tissues. Bungarus multicinctus venom induced the NF-κB nuclear translocation in the lung, while the HO-1 expression was suppressed. At the same time, venom activated the P53/PUMA signaling pathway and the BAX expression in the heart. Gln treatment reversed the above phenomenon and increased HSP70 expression. Conclusion: Gln alleviated the glutamine metabolism disorder and cardiopulmonary damage caused by Bungarus multicinctus venom. It may protect lungs and heart against venom by promoting the expression of HSP70, inhibiting the activation of NF-κB and P53/PUMA, thereby delaying the process of snake venom and reducing mortality. The present results indicate that Gln could be a potential treatment for Bungarus multicinctus bite.


Assuntos
Bungarus , Venenos Elapídicos , Lesão Pulmonar/terapia , Glutamina/uso terapêutico
2.
J. venom. anim. toxins incl. trop. dis ; 28: e20210110, 2022. graf
Artigo em Inglês | VETINDEX | ID: biblio-1395930

Resumo

Background: The cardiovascular system is one of the first systems to be affected by snake toxins; but not many toxins exert a direct effect on the heart. Cobra venom cardiotoxins are among those few toxins that attack the heart. Although the two cardiotoxin types (S and P) differ in their central-loop structure, it is not known whether they differ in their effect on the mammalian heart. We compared the effects of S- and P-type cardiotoxins, CTÐ¥-1 and CTÐ¥-2, respectively, from the cobra Naja oxiana, on the isolated rat heart. Methods: An isolated rat heart perfused according to the Langendorff technique was used in this study to investigate the activity of cardiotoxins CTX-1 and CTX-2. The following parameters were registered: the left ventricular developed pressure, calculated as the difference between systolic and diastolic pressure in the left ventricle, the end-diastolic pressure, the heart rate, time to maximal end-diastolic pressure (heart contracture), and time to depression of the heart contraction. Results: Both cardiotoxins at the concentration of 5 µg/mL initially produce a slight increase in systolic intraventricular pressure, followed by its rapid decrease with a simultaneous increase in diastolic intraventricular pressure until reaching contracture. CTX-2 blocks cardiac contractions faster than CTX-1; in its presence the maximum diastolic pressure is reached faster and the magnitude of the developed contracture is higher. Conclusion: The P-type cardiotoxin CTX-2 more strongly impairs rat heart functional activity than the S-type cardiotoxin CTX-1, as expressed in its faster blockage of cardiac contractions as well as in more rapid development and greater magnitude of contracture in its presence.(AU)


Assuntos
Animais , Ratos , Proteínas Cardiotóxicas de Elapídeos/química , Venenos Elapídicos/toxicidade , Coração/fisiologia
3.
J. venom. anim. toxins incl. trop. dis ; 28: e20220002, 2022. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1405509

Resumo

Background Cathepsin D (CatD) is a lysosomal proteolytic enzyme expressed in almost all tissues and organs. This protease is a multifunctional enzyme responsible for essential biological processes such as cell cycle regulation, differentiation, migration, tissue remodeling, neuronal growth, ovulation, and apoptosis. The overexpression and hypersecretion of CatD have been correlated with cancer aggressiveness and tumor progression, stimulating cancer cell proliferation, fibroblast growth, and angiogenesis. In addition, some studies report its participation in neurodegenerative diseases and inflammatory processes. In this regard, the search for new inhibitors from natural products could be an alternative against the harmful effects of this enzyme. Methods An investigation was carried out to analyze CatD interaction with snake venom toxins in an attempt to find inhibitory molecules. Interestingly, human CatD shows the ability to bind strongly to snake venom phospholipases A2 (svPLA2), forming a stable muti-enzymatic complex that maintains the catalytic activity of both CatD and PLA2. In addition, this complex remains active even under exposure to the specific inhibitor pepstatin A. Furthermore, the complex formation between CatD and svPLA2 was evidenced by surface plasmon resonance (SPR), two-dimensional electrophoresis, enzymatic assays, and extensive molecular docking and dynamics techniques. Conclusion The present study suggests the versatility of human CatD and svPLA2, showing that these enzymes can form a fully functional new enzymatic complex.


Assuntos
Catepsina D/análise , Venenos Elapídicos/química , Fosfolipases A2/análise , Complexos Multienzimáticos/química
4.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484779

Resumo

Abstract King Cobra (Ophiophagus hannah) has a significant place in many cultures, and is a medically important venomous snake in the world. Envenomation by this snake is highly lethal, manifested mainly by neurotoxicity and local tissue damage. King Cobra may be part of a larger species complex, and is widely distributed across Southeast Asia, southern China, northern and eastern regions as well as the Western Ghats of India, indicating potential geographical variation in venom composition. There is, however, only one species-specific King Cobra antivenom available worldwide that is produced in Thailand, using venom from the snake of Thai origin. Issues relating to the management of King Cobra envenomation (e.g., variation in the composition and toxicity of the venom, limited availability and efficacy of antivenom), and challenges faced in the research of venom (in particular proteomics), are rarely addressed. This article reviews the natural history and sociocultural importance of King Cobra, cases of snakebite envenomation caused by this species, current practice of management (preclinical and clinical), and major toxinological studies of the venom with a focus on venom proteomics, toxicity and neutralization. Unfortunately, epidemiological data of King Cobra bite is scarce, and venom proteomes reported in various studies revealed marked discrepancies in details. Challenges, such as inconsistency in snake venom sampling, varying methodology of proteomic analysis, lack of mechanistic and antivenomic studies, and controversy surrounding antivenom use in treating King Cobra envenomation are herein discussed. Future directions are proposed, including the effort to establish a standard, comprehensive Pan-Asian proteomic database of King Cobra venom, from which the venom variation can be determined. Research should be undertaken to characterize the toxin antigenicity, and to develop an antivenom with improved efficacy and wider geographical utility. The endeavors are aligned with the WHO´s roadmap that aims to reduce the disease burden of snakebite by 50% before 2030.

5.
J. venom. anim. toxins incl. trop. dis ; 27: e20210051, 2021. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1356458

Resumo

King Cobra (Ophiophagus hannah) has a significant place in many cultures, and is a medically important venomous snake in the world. Envenomation by this snake is highly lethal, manifested mainly by neurotoxicity and local tissue damage. King Cobra may be part of a larger species complex, and is widely distributed across Southeast Asia, southern China, northern and eastern regions as well as the Western Ghats of India, indicating potential geographical variation in venom composition. There is, however, only one species-specific King Cobra antivenom available worldwide that is produced in Thailand, using venom from the snake of Thai origin. Issues relating to the management of King Cobra envenomation (e.g., variation in the composition and toxicity of the venom, limited availability and efficacy of antivenom), and challenges faced in the research of venom (in particular proteomics), are rarely addressed. This article reviews the natural history and sociocultural importance of King Cobra, cases of snakebite envenomation caused by this species, current practice of management (preclinical and clinical), and major toxinological studies of the venom with a focus on venom proteomics, toxicity and neutralization. Unfortunately, epidemiological data of King Cobra bite is scarce, and venom proteomes reported in various studies revealed marked discrepancies in details. Challenges, such as inconsistency in snake venom sampling, varying methodology of proteomic analysis, lack of mechanistic and antivenomic studies, and controversy surrounding antivenom use in treating King Cobra envenomation are herein discussed. Future directions are proposed, including the effort to establish a standard, comprehensive Pan-Asian proteomic database of King Cobra venom, from which the venom variation can be determined. Research should be undertaken to characterize the toxin antigenicity, and to develop an antivenom with improved efficacy and wider geographical utility. The endeavors are aligned with the WHO´s roadmap that aims to reduce the disease burden of snakebite by 50% before 2030.(AU)


Assuntos
Animais , Intoxicação , Mordeduras de Serpentes , Serpentes , Antivenenos , Proteoma , Venenos Elapídicos , História Natural
6.
J. venom. anim. toxins incl. trop. dis ; 27: e20200125, 2021. tab, graf
Artigo em Inglês | VETINDEX, LILACS | ID: biblio-1287096

Resumo

Background Naja mandalayensis is a spitting cobra from Myanmar. To the best of our knowledge, no studies on this venom composition have been conducted so far. On the other hand, few envenomation descriptions state that it elicits mainly local inflammation in the victims' eyes, the preferred target of this spiting cobra. Symptoms would typically include burning and painful sensation, conjunctivitis, edema and temporary loss of vision. Methods We have performed a liquid-chromatography (C18-RP-HPLC) mass spectrometry (ESI-IT-TOF/MS) based approach in order to biochemically characterize N. mandalayensis venom. Results A wide variety of three-finger toxins (cardiotoxins) and metallopeptidases were detected. Less abundant, but still representative, were cysteine-rich secretory proteins, L-amino-acid oxidases, phospholipases A2, venom 5'-nucleotidase and a serine peptidase inhibitor. Other proteins were present, but were detected in a relatively small concentration. Conclusion The present study set the basis for a better comprehension of the envenomation from a molecular perspective and, by increasing the interest and information available for this species, allows future venom comparisons among cobras and their diverse venom proteins.(AU)


Assuntos
Animais , Proteômica/classificação , Venenos Elapídicos/enzimologia
7.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200125, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31929

Resumo

Naja mandalayensis is a spitting cobra from Myanmar. To the best of our knowledge, no studies on this venom composition have been conducted so far. On the other hand, few envenomation descriptions state that it elicits mainly local inflammation in the victims' eyes, the preferred target of this spiting cobra. Symptoms would typically include burning and painful sensation, conjunctivitis, edema and temporary loss of vision. Methods We have performed a liquid-chromatography (C18-RP-HPLC) mass spectrometry (ESI-IT-TOF/MS) based approach in order to biochemically characterize N. mandalayensis venom. Results A wide variety of three-finger toxins (cardiotoxins) and metallopeptidases were detected. Less abundant, but still representative, were cysteine-rich secretory proteins, L-amino-acid oxidases, phospholipases A2, venom 5'-nucleotidase and a serine peptidase inhibitor. Other proteins were present, but were detected in a relatively small concentration. Conclusion The present study set the basis for a better comprehension of the envenomation from a molecular perspective and, by increasing the interest and information available for this species, allows future venom comparisons among cobras and their diverse venom proteins.(AU)


Assuntos
Animais , Proteômica/classificação , Venenos Elapídicos/enzimologia
8.
J. venom. anim. toxins incl. trop. dis ; 27: e20200047, 2021. tab, graf
Artigo em Inglês | VETINDEX, LILACS | ID: biblio-1287090

Resumo

The venom of the krait (Bungarus sindanus), an Elapidae snake, is highly toxic to humans and contains a great amount of acetylcholinesterase (AChE). The enzyme AChE provokes the hydrolysis of substrate acetylcholine (ACh) in the nervous system and terminates nerve impulse. Different inhibitors inactivate AChE and lead to ACh accumulation and disrupted neurotransmission. Methods: The present study was designed to evaluate the effect of palladium(II) complex as antivenom against krait venom AChE using kinetics methods. Results: Statistical analysis showed that krait venom AChE inhibition decreases with the increase of Pd(II) complex (0.025-0.05 µM) and exerted 61% inhibition against the AChE at a fixed concentration (0.5 mM) of ACh. Kinetic analysis using the Lineweaver Burk plot showed that Pd(II) caused a competitive inhibition. The compound Pd(II) complex binds at the active site of the enzyme. It was observed that K m (Michaelis-Menten constant of AChE-ACh into AChE and product) increased from 0.108 to 0.310 mM (45.74 to 318.35%) and V max remained constant with an increase of Pd(II) complex concentrations. In AChE K Iapp was found to increase from 0.0912 to 0.025 µM (29.82-72.58%) and did not affect the V maxapp with an increase of ACh from (0.05-1 mM). K i (inhibitory constant) was estimated to be 0.029µM for snake venom; while the K m was estimated to be 0.4 mM. The calculated IC50 for Pd(II) complex was found to be 0.043 µM at constant ACh concentration (0.5 mM). Conclusions: The results show that the Pd(II) complex can be deliberated as an inhibitor of AChE.(AU)


Assuntos
Animais , Bungarus , Venenos Elapídicos/toxicidade , Biologia Sintética , Paládio , Acetilcolinesterase
9.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200047, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31975

Resumo

The venom of the krait (Bungarus sindanus), an Elapidae snake, is highly toxic to humans and contains a great amount of acetylcholinesterase (AChE). The enzyme AChE provokes the hydrolysis of substrate acetylcholine (ACh) in the nervous system and terminates nerve impulse. Different inhibitors inactivate AChE and lead to ACh accumulation and disrupted neurotransmission. Methods: The present study was designed to evaluate the effect of palladium(II) complex as antivenom against krait venom AChE using kinetics methods. Results: Statistical analysis showed that krait venom AChE inhibition decreases with the increase of Pd(II) complex (0.025-0.05 µM) and exerted 61% inhibition against the AChE at a fixed concentration (0.5 mM) of ACh. Kinetic analysis using the Lineweaver Burk plot showed that Pd(II) caused a competitive inhibition. The compound Pd(II) complex binds at the active site of the enzyme. It was observed that K m (Michaelis-Menten constant of AChE-ACh into AChE and product) increased from 0.108 to 0.310 mM (45.74 to 318.35%) and V max remained constant with an increase of Pd(II) complex concentrations. In AChE K Iapp was found to increase from 0.0912 to 0.025 µM (29.82-72.58%) and did not affect the V maxapp with an increase of ACh from (0.05-1 mM). K i (inhibitory constant) was estimated to be 0.029µM for snake venom; while the K m was estimated to be 0.4 mM. The calculated IC50 for Pd(II) complex was found to be 0.043 µM at constant ACh concentration (0.5 mM). Conclusions: The results show that the Pd(II) complex can be deliberated as an inhibitor of AChE.(AU)


Assuntos
Animais , Bungarus , Venenos Elapídicos/toxicidade , Biologia Sintética , Paládio , Acetilcolinesterase
10.
J. venom. anim. toxins incl. trop. dis ; 27: e20200068, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1154772

Resumo

Maintenance of snakes at Butantan Institute started in the last century, intending to produce a different antivenom serum to reduce death caused by snakebites. Through a successful campaign coordinated by Vital Brazil, farmers sent venomous snakes to Butantan Institute by the railway lines with no cost. From 1908 to 1962, the snakes were kept in an outdoor serpentarium, where venom extraction was performed every 15 days. During this period, the snake average survival was 15 days. In 1963, the snakes were transferred to an adapted building, currently called Laboratory of Herpetology (LH), to be maintained in an intensive system. Although the periodicity of venom extraction remained the same, animal average survival increased to two months. With the severe serum crisis in 1983, the Ministry of Health financed remodeling for the three public antivenom producers, and with this support, the LH could be improved. Air conditioning and exhausting systems were installed in the rooms, besides the settlement of critical hygienic-sanitary managements to increase the welfare of snakes. In the early 1990s, snake survival was ten months. Over the years to the present day, several improvements have been made in the intensive serpentarium, as the establishment of two quarantines, feeding with thawed rodents, an interval of two months between venom extraction routines, and monitoring of snake health through laboratory tests. With these new protocols, average snake survival increased significantly, being eight years for the genus Bothrops, ten years for genus Crotalus and Lachesis, and four years for the genus Micrurus. Aiming the production of venoms of good quality, respect for good management practices is essential for the maintenance of snakes in captivity. New techniques and efficient management must always be sought to improve animal welfare, the quality of the venom produced, and the safety of those working directly with the venomous snakes.(AU)


Assuntos
Animais , Mordeduras de Serpentes , Viperidae , Venenos Elapídicos/biossíntese , Bem-Estar do Animal , Custos e Análise de Custo
11.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200068, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31985

Resumo

Maintenance of snakes at Butantan Institute started in the last century, intending to produce a different antivenom serum to reduce death caused by snakebites. Through a successful campaign coordinated by Vital Brazil, farmers sent venomous snakes to Butantan Institute by the railway lines with no cost. From 1908 to 1962, the snakes were kept in an outdoor serpentarium, where venom extraction was performed every 15 days. During this period, the snake average survival was 15 days. In 1963, the snakes were transferred to an adapted building, currently called Laboratory of Herpetology (LH), to be maintained in an intensive system. Although the periodicity of venom extraction remained the same, animal average survival increased to two months. With the severe serum crisis in 1983, the Ministry of Health financed remodeling for the three public antivenom producers, and with this support, the LH could be improved. Air conditioning and exhausting systems were installed in the rooms, besides the settlement of critical hygienic-sanitary managements to increase the welfare of snakes. In the early 1990s, snake survival was ten months. Over the years to the present day, several improvements have been made in the intensive serpentarium, as the establishment of two quarantines, feeding with thawed rodents, an interval of two months between venom extraction routines, and monitoring of snake health through laboratory tests. With these new protocols, average snake survival increased significantly, being eight years for the genus Bothrops, ten years for genus Crotalus and Lachesis, and four years for the genus Micrurus. Aiming the production of venoms of good quality, respect for good management practices is essential for the maintenance of snakes in captivity. New techniques and efficient management must always be sought to improve animal welfare, the quality of the venom produced, and the safety of those working directly with the venomous snakes.(AU)


Assuntos
Animais , Mordeduras de Serpentes , Viperidae , Venenos Elapídicos/biossíntese , Bem-Estar do Animal , Custos e Análise de Custo
12.
Rev. bras. ciênc. avic ; 23(2)abr. 2021.
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1490852

Resumo

ABSTRACT Rural communities rely heavily on chickens to meet their socio-economic needs. However, predators, diseases, and parasites deprive them of nutrients required for sustained growth and development. A cross-sectional survey and key informant interviews were conducted in selected villages of Limpopo Province, South Africa to find out the parasites and predators prevalent in indigenous chickens. Medicinal plants commonly used to control parasites as well as the household heads views on the preservation of indigenous chickens for sustained rural food security were investigated. Qualitative data gathered through interviews was analysed thematically using Atlas Ti version 8.1.4 while the IBM Statistical Package for the Social Sciences version 25.0 was used to compute descriptive statistics and carry out cross-tabulations of quantitative data. Approximately, 72 % of the respondents reported that predation affected chicks with hens at (67 %) and cocks (63 %) following in that respective order. Snakes such as the king cobra (phakhu phakhu), birds such as the martial eagle (Goni), and wild animals, especially the genet cat (tsimba) were the predominant predators. Among the commonest parasites, fleas [Dermanyssus gallinae (thatha)] and mites [Siphonaptera (magomani)] were predominant. Sorghum (Sorghum bicolour) and aloe (Aloe vera) were the most common medicinal plants that were used to control the parasites. It is, therefore, recommended that farmers and extension officers alike, consider the profile of major predators, parasites, medical plants, and preservation of indigenous knowledge for the sustainability of indigenous chickens and enhanced rural food security.

13.
J. venom. anim. toxins incl. trop. dis ; 26: e20200005, 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135147

Resumo

Beta-cardiotoxin (ß-CTX), the three-finger toxin isolated from king cobra (Ophiophagus hannah) venom, possesses ß-blocker activity as indicated by its negative chronotropy and its binding property to both ß-1 and ß-2 adrenergic receptors and has been proposed as a novel ß-blocker candidate. Previously, ß-CTX was isolated and purified by FPLC. Here, we present an alternative method to purify this toxin. In addition, we tested its cytotoxicity against different mammalian muscle cell types and determined the impact on cardiac function in isolated cardiac myocyte so as to provide insights into the pharmacological action of this protein. Methods: ß-CTX was isolated from the crude venom of the Thai king cobra using reverse-phased and cation exchange HPLC. In vitro cellular viability MTT assays were performed on mouse myoblast (C2C12), rat smooth muscle (A7r5), and rat cardiac myoblast (H9c2) cells. Cell shortening and calcium transient dynamics were recorded on isolated rat cardiac myocytes over a range of ß-CTX concentration. Results: Purified ß-CTX was recovered from crude venom (0.53% w/w). MTT assays revealed 50% cytotoxicity on A7r5 cells at 9.41 ± 1.14 µM (n = 3), but no cytotoxicity on C2C12 and H9c2 cells up to 114.09 µM. ß-CTX suppressed the extend of rat cardiac cell shortening in a dose-dependent manner; the half-maximal inhibition concentration was 95.97 ± 50.10 nM (n = 3). In addition, the rates of cell shortening and re-lengthening were decreased in ß-CTX treated myocytes concomitant with a prolongation of the intracellular calcium transient decay, indicating depression of cardiac contractility secondary to altered cardiac calcium homeostasis. Conclusion: We present an alternative purification method for ß-CTX from king cobra venom. We reveal cytotoxicity towards smooth muscle and depression of cardiac contractility by this protein. These data are useful to aid future development of pharmacological agents derived from ß-CTX.(AU)


Assuntos
Animais , Charibdotoxina/isolamento & purificação , Miócitos Cardíacos , Proteínas Cardiotóxicas de Elapídeos , Venenos Elapídicos , Cardiotoxinas , Ophiophagus hannah , Supressão , Citotoxicidade Imunológica
14.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20190099, June 19, 2020. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-29968

Resumo

Background:The production of antivenom from immunized animals is an established treatment for snakebites; however, antibody phage display technology may have the capacity to delivery results more quickly and with a better match to local need. Naja oxiana, the Iranian cobra, is a medically important species, responsible for a significant number of deaths annually. This study was designed as proof of principle to determine whether recombinant antibodies with the capacity to neutralize cobra venom could be isolated by phage display.Methods:Toxic fractions from cobra venom were prepared by chromatography and used as targets in phage display to isolate recombinant antibodies from a human scFv library. Candidate antibodies were expressed in E. coli HB2151 and purified by IMAC chromatography. The selected clones were analyzed in in vivo and in vitro experiments.Results:Venom toxicity was contained in two fractions. Around a hundred phage clones were isolated against each fraction, those showing the best promise were G12F3 and G1F4. While all chosen clones showed low but detectable neutralizing effect against Naja oxiana venom, clone G12F3 could inhibit PLA2 activity.Conclusion:Therefore, phage display is believed to have a good potential as an approach to the development of snake antivenom.(AU)


Assuntos
Animais , Naja naja , Venenos Elapídicos/antagonistas & inibidores , Antivenenos/análise , Terapia por Fagos , Colífagos
15.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200005, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32209

Resumo

Beta-cardiotoxin (ß-CTX), the three-finger toxin isolated from king cobra (Ophiophagus hannah) venom, possesses ß-blocker activity as indicated by its negative chronotropy and its binding property to both ß-1 and ß-2 adrenergic receptors and has been proposed as a novel ß-blocker candidate. Previously, ß-CTX was isolated and purified by FPLC. Here, we present an alternative method to purify this toxin. In addition, we tested its cytotoxicity against different mammalian muscle cell types and determined the impact on cardiac function in isolated cardiac myocyte so as to provide insights into the pharmacological action of this protein. Methods: ß-CTX was isolated from the crude venom of the Thai king cobra using reverse-phased and cation exchange HPLC. In vitro cellular viability MTT assays were performed on mouse myoblast (C2C12), rat smooth muscle (A7r5), and rat cardiac myoblast (H9c2) cells. Cell shortening and calcium transient dynamics were recorded on isolated rat cardiac myocytes over a range of ß-CTX concentration. Results: Purified ß-CTX was recovered from crude venom (0.53% w/w). MTT assays revealed 50% cytotoxicity on A7r5 cells at 9.41 ± 1.14 µM (n = 3), but no cytotoxicity on C2C12 and H9c2 cells up to 114.09 µM. ß-CTX suppressed the extend of rat cardiac cell shortening in a dose-dependent manner; the half-maximal inhibition concentration was 95.97 ± 50.10 nM (n = 3). In addition, the rates of cell shortening and re-lengthening were decreased in ß-CTX treated myocytes concomitant with a prolongation of the intracellular calcium transient decay, indicating depression of cardiac contractility secondary to altered cardiac calcium homeostasis. Conclusion: We present an alternative purification method for ß-CTX from king cobra venom. We reveal cytotoxicity towards smooth muscle and depression of cardiac contractility by this protein. These data are useful to aid future development of pharmacological agents derived from ß-CTX.(AU)


Assuntos
Animais , Venenos Elapídicos/análise , Venenos Elapídicos/isolamento & purificação , Miócitos Cardíacos/fisiologia , Cardiotoxinas/administração & dosagem
16.
J. venom. anim. toxins incl. trop. dis ; 26: e20190047, 2020. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1091019

Resumo

Background: Cancer is the second most common fatal disease in the world, behind cardiovascular disorders in the first place. It accounts for around 0.3 million deaths per year in India due to the lack of proper diagnostic facilities, prevention and treatment. Current therapeutic methods do not provide adequate protection and affect normal cells along with cancerous ones. Thus, there is a need for some alternative therapeutic strategy, preferably from natural products, which have been traditionally used for treatment of various diseases in the country. Methods: In this study, we have conjugated purified NN-32 toxin from Naja naja venom with gold nanoparticles and its anticancer potential was evaluated against human breast cancer cell lines. UV-Vis spectroscopy, dynamic light scattering, transmission electron microscopy, atomic force microscopy and zeta potential analysis were the techniques used for characterization of GNP-NN-32. Results: GNP-NN-32 showed dose- and time-dependent cytotoxicity against breast cancer cell lines (MCF-7 and MDA-MB-231). NN-32 and GNP-NN-32 induced apoptosis in both breast cancer cell lines. The results of CFSE cell proliferation study revealed that NN-32 and GNP-NN-32 arrested cell division in both MCF-7 and MDA-MB-231 cell lines resulting in inhibition of proliferation of these cancer cells. Conclusion: GNP-NN-32 showed an anticancer potential against human breast cancer cell lines. Analysis of detailed chemical characterization along with its cytotoxic property might help to perceive a new dimension of the anti-cancer potential of GNP-NN-32 that will enhance its biomedical function in near future.(AU)


Assuntos
Animais , Venenos Elapídicos , Naja naja , Antineoplásicos
17.
J. venom. anim. toxins incl. trop. dis ; 26: e20190099, 2020. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135151

Resumo

The production of antivenom from immunized animals is an established treatment for snakebites; however, antibody phage display technology may have the capacity to delivery results more quickly and with a better match to local need. Naja oxiana, the Iranian cobra, is a medically important species, responsible for a significant number of deaths annually. This study was designed as proof of principle to determine whether recombinant antibodies with the capacity to neutralize cobra venom could be isolated by phage display. Methods: Toxic fractions from cobra venom were prepared by chromatography and used as targets in phage display to isolate recombinant antibodies from a human scFv library. Candidate antibodies were expressed in E. coli HB2151 and purified by IMAC chromatography. The selected clones were analyzed in in vivo and in vitro experiments. Results: Venom toxicity was contained in two fractions. Around a hundred phage clones were isolated against each fraction, those showing the best promise were G12F3 and G1F4. While all chosen clones showed low but detectable neutralizing effect against Naja oxiana venom, clone G12F3 could inhibit PLA2 activity. Conclusion: Therefore, phage display is believed to have a good potential as an approach to the development of snake antivenom.(AU)


Assuntos
Animais , Mordeduras de Serpentes , Bacteriófagos/isolamento & purificação , Antivenenos , Venenos Elapídicos/síntese química , Anticorpos , Técnicas In Vitro
18.
J. venom. anim. toxins incl. trop. dis ; 26: e20200016, 2020. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135158

Resumo

South American rattlesnakes are represented in Brazil by a single species, Crotalus durissus, which has public health importance due to the severity of its envenomation and to its wide geographical distribution. The species is subdivided into several subspecies, but the current classification is controversial. In Brazil, the venoms of C. d. terrificus and C. d. collilineatus are used for hyperimmunization of horses for antivenom production, even though the distinction of these two subspecies are mostly by their geographical distribution. In this context, we described a comparative compositional and functional characterization of individual C. d. collilineatus and C. d. terrificus venoms from three Brazilian states. Methods: We compared the compositional patterns of C. d. terrificus and C. d. collilineatus individual venoms by 1-DE and RP-HPLC. For functional analyzes, the enzymatic activities of PLA2, LAAO, and coagulant activity were evaluated. Finally, the immunorecognition of venom toxins by the crotalic antivenom produced at Butantan Institute was evaluated using Western blotting. Results: The protein profile of individual venoms from C. d. collilineatus and C. d. terrificus showed a comparable overall composition, despite some intraspecific variation, especially regarding crotamine and LAAO. Interestingly, HPLC analysis showed a geographic pattern concerning PLA2. In addition, a remarkable intraspecific variation was also observed in PLA2, LAAO and coagulant activities. The immunorecognition pattern of individual venoms from C. d. collilineatus and C. d. terrificus by crotalic antivenom produced at Butantan Institute was similar. Conclusions: The results highlighted the individual variability among the venoms of C. durissus ssp. specimens. Importantly, our data point to a geographical variation of C. durissus ssp. venom profile, regardless of the subspecies, as evidenced by PLA2 isoforms complexity, which may explain the increase in venom neurotoxicity from Northeastern through Southern Brazil reported for the species.(AU)


Assuntos
Animais , Crotalus , Venenos Elapídicos , Fosfolipases A2 , Localizações Geográficas
19.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20190047, Mar. 2, 2020. ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-24875

Resumo

Background:Cancer is the second most common fatal disease in the world, behind cardiovascular disorders in the first place. It accounts for around 0.3 million deaths per year in India due to the lack of proper diagnostic facilities, prevention and treatment. Current therapeutic methods do not provide adequate protection and affect normal cells along with cancerous ones. Thus, there is a need for some alternative therapeutic strategy, preferably from natural products, which have been traditionally used for treatment of various diseases in the country.Methods:In this study, we have conjugated purified NN-32 toxin from Naja naja venom with gold nanoparticles and its anticancer potential was evaluated against human breast cancer cell lines. UV-Vis spectroscopy, dynamic light scattering, transmission electron microscopy, atomic force microscopy and zeta potential analysis were the techniques used for characterization of GNP-NN-32.Results:GNP-NN-32 showed dose- and time-dependent cytotoxicity against breast cancer cell lines (MCF-7 and MDA-MB-231). NN-32 and GNP-NN-32 induced apoptosis in both breast cancer cell lines. The results of CFSE cell proliferation study revealed that NN-32 and GNP-NN-32 arrested cell division in both MCF-7 and MDA-MB-231 cell lines resulting in inhibition of proliferation of these cancer cells.Conclusion:GNP-NN-32 showed an anticancer potential against human breast cancer cell lines. Analysis of detailed chemical characterization along with its cytotoxic property might help to perceive a new dimension of the anti-cancer potential of GNP-NN-32 that will enhance its biomedical function in near future.(AU)


Assuntos
Animais , Naja naja , Venenos Elapídicos/uso terapêutico , Anticarcinógenos/análise , Nanopartículas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Citometria de Fluxo
20.
J. venom. anim. toxins incl. trop. dis ; 26: e20190044, 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1091017

Resumo

Abstract Background: Endogenous phospholipase A2 inhibitors from snake blood (sbPLIs) have been isolated from several species around the world, with the primary function of self-protection against the action of toxic phospholipases A2. In American snakes, sbPLIs were solely described in pit vipers, in which the natural protection role is justified. In this study, we described a sbPLI in Boa constrictor (popularly known as jiboia), a non-venomous snake species from America. Methods: PLA2 inhibitory activity was tested in the blood plasma of B. constrictor using C. d. terrificus venom as the enzyme source. Antibodies developed against CNF, a sbγPLI from Crotalus durissus terrificus, were used to investigate the presence of homologues in the blood plasma of B. constrictor. A CNF-like molecule with a PLA2 inhibitory activity was purified by column chromatography. The encoding gene for the inhibitor was cloned from B. constrictor liver tissue. The DNA fragment was cloned, purified and sequenced. The deduced primary sequence of interest was aligned with known sbγPLIs from the literature. Results: The blood plasma of B. constrictor displayed PLA2 inhibitory activity. A CNF-like molecule (named BcNF) was identified and purified from the blood plasma of B. constrictor. Basic properties such as molecular mass, composing amino acids, and pI were comparable, but BcNF displayed reduced specific activity in PLA2 inhibition. BcNF showed highest identity scores (ISs) with sbγPLIs from pit vipers from Latin America (90-100%), followed by gamma inhibitors from Asian viperid (80-90%). ISs below 70% were obtained for BcNF and non-venomous species from Asia. Conclusion: A functional sbγPLI (BcNF) was described in the blood plasma of B. constrictor. BcNF displayed higher primary identity with sbγPLIs from Viperidae than to sbγPLIs from non-venomous species from Asia. The physiological role played by sbγPLIs in non-venomous snake species remains to be understood. Further investigation is needed.(AU)


Assuntos
Animais , Serpentes , Viperidae , Venenos Elapídicos , Fosfolipases A2 , Inibidores de Fosfolipase A2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA