Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J. venom. anim. toxins incl. trop. dis ; 27: e20200105, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1180822

Resumo

Amphibians inhabit the terrestrial environment, a conquest achieved after several evolutionary steps, which were still insufficient to make them completely independent of the aquatic environment. These processes gave rise to many morphological and physiological changes, making their skin (and cutaneous secretion) rich in bioactive molecules. Among the tree frogs, the secretion is composed mainly of peptides; but alkaloids, proteins and steroids can also be found depending on the species. The most known class of biologically active molecules is the antimicrobial peptides (AMPs) that act against bacteria, fungi and protozoans. Although these molecules are well-studied among the hylids, AMPs ontogeny remains unknown. Therefore, we performed peptidomic and proteomic analyses of Pithecopus nordestinus (formerly Phyllomedusa nordestina) in order to evaluate the peptide content in post-metamorphosed juveniles and adult individuals. Methods: Cutaneous secretion of both life stages of individuals was obtained and analyzed by LC-MS/MS after reduction and alkylation of disulfide bonds or reduction, alkylation and hydrolysis by trypsin. Results: Differences in the TIC profile of juveniles and adults in both treatments were observed. Moreover, the proteomic data revealed known proteins and peptides, with slight differences in the composition, according to the life stage and the treatment. AMPs were identified, and bradykinin-potentiating peptides were observed in trypsin-treated samples, which suggests a protein source of such peptide (cryptide). Conclusion: In general, skin secretion contents were similar between juveniles and adults, varying in quantity, indicating that the different stages of life are reflected in the number of molecules and not on their diversity.(AU)


Assuntos
Animais , Feminino , Peptídeos , Tripsina , Proteômica , Anfíbios , Secreções Corporais , Hidrólise
2.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200105, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31988

Resumo

Amphibians inhabit the terrestrial environment, a conquest achieved after several evolutionary steps, which were still insufficient to make them completely independent of the aquatic environment. These processes gave rise to many morphological and physiological changes, making their skin (and cutaneous secretion) rich in bioactive molecules. Among the tree frogs, the secretion is composed mainly of peptides; but alkaloids, proteins and steroids can also be found depending on the species. The most known class of biologically active molecules is the antimicrobial peptides (AMPs) that act against bacteria, fungi and protozoans. Although these molecules are well-studied among the hylids, AMPs ontogeny remains unknown. Therefore, we performed peptidomic and proteomic analyses of Pithecopus nordestinus (formerly Phyllomedusa nordestina) in order to evaluate the peptide content in post-metamorphosed juveniles and adult individuals. Methods: Cutaneous secretion of both life stages of individuals was obtained and analyzed by LC-MS/MS after reduction and alkylation of disulfide bonds or reduction, alkylation and hydrolysis by trypsin. Results: Differences in the TIC profile of juveniles and adults in both treatments were observed. Moreover, the proteomic data revealed known proteins and peptides, with slight differences in the composition, according to the life stage and the treatment. AMPs were identified, and bradykinin-potentiating peptides were observed in trypsin-treated samples, which suggests a protein source of such peptide (cryptide). Conclusion: In general, skin secretion contents were similar between juveniles and adults, varying in quantity, indicating that the different stages of life are reflected in the number of molecules and not on their diversity.(AU)


Assuntos
Animais , Feminino , Peptídeos , Tripsina , Proteômica , Anfíbios , Secreções Corporais , Hidrólise
3.
J. venom. anim. toxins incl. trop. dis ; 26: e20200055, 2020. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135155

Resumo

Bothrops atrox is known to be the pit viper responsible for most snakebites and human fatalities in the Amazon region. It can be found in a wide geographical area including northern South America, the east of Andes and the Amazon basin. Possibly, due to its wide distribution and generalist feeding, intraspecific venom variation was reported by previous proteomics studies. Sex-based and ontogenetic variations on venom compositions of Bothrops snakes were also subject of proteomic and peptidomic analysis. However, the venom peptidome of B. atrox remains unknown. Methods: We conducted a mass spectrometry-based analysis of the venom peptides of individual male and female specimens combining bottom-up and top-down approaches. Results: We identified in B. atrox a total of 105 native peptides in the mass range of 0.4 to 13.9 kDa. Quantitative analysis showed that phospholipase A2 and bradykinin potentiating peptides were the most abundant peptide families in both genders, whereas disintegrin levels were significantly increased in the venoms of females. Known peptides processed at non-canonical sites and new peptides as the Ba1a, which contains the SVMP BATXSVMPII1 catalytic site, were also revealed in this work. Conclusion: The venom peptidomes of male and female specimens of B. atrox were analyzed by mass spectrometry-based approaches in this work. The study points to differences in disintegrin levels in the venoms of females that may result in distinct pathophysiology of envenomation. Further research is required to explore the potential biological implications of this finding.(AU)


Assuntos
Animais , Peptídeos , Bothrops , Venenos de Crotalídeos/biossíntese , Caracteres Sexuais , Ecossistema Amazônico , Peptidomiméticos
4.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200055, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32207

Resumo

Bothrops atrox is known to be the pit viper responsible for most snakebites and human fatalities in the Amazon region. It can be found in a wide geographical area including northern South America, the east of Andes and the Amazon basin. Possibly, due to its wide distribution and generalist feeding, intraspecific venom variation was reported by previous proteomics studies. Sex-based and ontogenetic variations on venom compositions of Bothrops snakes were also subject of proteomic and peptidomic analysis. However, the venom peptidome of B. atrox remains unknown. Methods: We conducted a mass spectrometry-based analysis of the venom peptides of individual male and female specimens combining bottom-up and top-down approaches. Results: We identified in B. atrox a total of 105 native peptides in the mass range of 0.4 to 13.9 kDa. Quantitative analysis showed that phospholipase A2 and bradykinin potentiating peptides were the most abundant peptide families in both genders, whereas disintegrin levels were significantly increased in the venoms of females. Known peptides processed at non-canonical sites and new peptides as the Ba1a, which contains the SVMP BATXSVMPII1 catalytic site, were also revealed in this work. Conclusion: The venom peptidomes of male and female specimens of B. atrox were analyzed by mass spectrometry-based approaches in this work. The study points to differences in disintegrin levels in the venoms of females that may result in distinct pathophysiology of envenomation. Further research is required to explore the potential biological implications of this finding.(AU)


Assuntos
Animais , Venenos de Serpentes/análise , Venenos de Serpentes/química , Peptidomiméticos/análise , Peptidomiméticos/química , Caracteres Sexuais , Desintegrinas/análise , Desintegrinas/química , Bothrops
5.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 24: 1-11, 2018. graf, tab
Artigo em Inglês | VETINDEX | ID: vti-18346

Resumo

Background: Advancements in proteomics, including the technological improvement in instrumentation, have turned mass spectrometry into an indispensable tool in the study of venoms and toxins. In addition, the advance of nanoscale liquid chromatography coupled to nanoelectrospray mass spectrometry allows, due to its high sensitivity, the study of venoms from species previously left aside, such as ants. Ant venoms are a complex mixture of compounds used for defense, predation or communication purposes. The venom from Neoponera ants, a genus restricted to Neotropical regions, is known to have cytolytic, hemolytic, antimicrobial and insecticidal activities. Moreover, venoms from several Neoponera species have been compared and differences in their toxicity related to nesting habitat variation were reported. Therefore, the present study aimed to perform a deep peptidomic analysis of Neoponera villosa venom and a comparison of seasonal and nesting habitat variations using high-resolution mass spectrometry. Methods: Specimens of N. villosa ants were captured in Panga Natural Reserve (Uberlândia, MG, Brazil) from arboreal and ground-dwelling nests during summer and winter time. The venom glands were dissected, pooled and disrupted by ultra-sonic waves. The venom collected from different habitats (arboreal and ground-dwelling) and different seasons (summer and winter) was injected into a nanoACQUITY ULPC hyphened to a Q-Exactive Orbitrap mass spectrometer. The raw data were analyzed using PEAKS 7. Results: The results showed a molecular diversity of more than 500 peptides among these venoms, mostly in the mass range of 8004000 Da. Mutations and post-translational modifications were described and differences among the venoms were observed. Part of the peptides matched with ponericins, a well-known antimicrobial peptide family...(AU)


Assuntos
Animais , Venenos de Formiga , Mapeamento de Peptídeos , Espectrometria de Massas/métodos , Peptídeos/classificação , Estações do Ano
6.
J. venom. anim. toxins incl. trop. dis ; 24: 1-11, 2018. graf, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484737

Resumo

Background: Advancements in proteomics, including the technological improvement in instrumentation, have turned mass spectrometry into an indispensable tool in the study of venoms and toxins. In addition, the advance of nanoscale liquid chromatography coupled to nanoelectrospray mass spectrometry allows, due to its high sensitivity, the study of venoms from species previously left aside, such as ants. Ant venoms are a complex mixture of compounds used for defense, predation or communication purposes. The venom from Neoponera ants, a genus restricted to Neotropical regions, is known to have cytolytic, hemolytic, antimicrobial and insecticidal activities. Moreover, venoms from several Neoponera species have been compared and differences in their toxicity related to nesting habitat variation were reported. Therefore, the present study aimed to perform a deep peptidomic analysis of Neoponera villosa venom and a comparison of seasonal and nesting habitat variations using high-resolution mass spectrometry. Methods: Specimens of N. villosa ants were captured in Panga Natural Reserve (Uberlândia, MG, Brazil) from arboreal and ground-dwelling nests during summer and winter time. The venom glands were dissected, pooled and disrupted by ultra-sonic waves. The venom collected from different habitats (arboreal and ground-dwelling) and different seasons (summer and winter) was injected into a nanoACQUITY ULPC hyphened to a Q-Exactive Orbitrap mass spectrometer. The raw data were analyzed using PEAKS 7. Results: The results showed a molecular diversity of more than 500 peptides among these venoms, mostly in the mass range of 8004000 Da. Mutations and post-translational modifications were described and differences among the venoms were observed. Part of the peptides matched with ponericins, a well-known antimicrobial peptide family...


Assuntos
Animais , Espectrometria de Massas/métodos , Mapeamento de Peptídeos , Peptídeos/classificação , Venenos de Formiga , Estações do Ano
7.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954783

Resumo

Background Sea urchins can be found throughout the Brazilian coast and are reported to be one of the major causes of marine accidents on the shoreline. Although not lethal, these accidents are reported to be extremely painful. In order to understand the toxinology of the Brazilian urchins, a peptidomic approach was performed aiming to characterize the naturally occurring peptides in both the coelomic fluid and the spine. Methods Animals were collected without gender distinction and samples of the coelomic fluid and spines extracted were analyzed by RP-HPLC and mass spectrometry for peptide de novo sequencing. Results Several peptides were identified either in the coelomic fluid or the spine extract (except for E. lucunter). The peptide sequences were aligned with public deposited sequences and possible functions were inferred. Moreover, some peptides can be cryptides, since their sequences were identified within functional proteins, for example thymosin from Strongylocentrotus purpuratus. Conclusions Although preliminary, the peptidomic approach presented here reports, for the first time, the abundance of novel biological molecules derived from these animals. The discovery of such molecules may be of potential biotechnological application, as described for other organisms; nevertheless, further studies are required.(AU)


Assuntos
Peptídeos , Ouriços-do-Mar , Produtos Biológicos , Arbacia , Lytechinus , Toxicologia
8.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 22: [1-8], Junho 14, 2016. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-15802

Resumo

Sea urchins can be found throughout the Brazilian coast and are reported to be one of the major causes of marine accidents on the shoreline. Although not lethal, these accidents are reported to be extremely painful. In order to understand the toxinology of the Brazilian urchins, a peptidomic approach was performed aiming to characterize the naturally occurring peptides in both the coelomic fluid and the spine. Methods Animals were collected without gender distinction and samples of the coelomic fluid and spines extracted were analyzed by RP-HPLC and mass spectrometry for peptide de novo sequencing. Results Several peptides were identified either in the coelomic fluid or the spine extract (except for E. lucunter). The peptide sequences were aligned with public deposited sequences and possible functions were inferred. Moreover, some peptides can be cryptides, since their sequences were identified within functional proteins, for example thymosin from Strongylocentrotus purpuratus. Conclusions Although preliminary, the peptidomic approach presented here reports, for the first time, the abundance of novel biological molecules derived from these animals. The discovery of such molecules may be of potential biotechnological application, as described for other organisms; nevertheless, further studies are required.(AU)


Assuntos
Animais , Arbacia/química , Arbacia/classificação , Lytechinus/química , Lytechinus/classificação , Peptídeos/análise , Peptídeos/química
9.
J. venom. anim. toxins incl. trop. dis ; 22: [1-8], 2016. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484675

Resumo

Sea urchins can be found throughout the Brazilian coast and are reported to be one of the major causes of marine accidents on the shoreline. Although not lethal, these accidents are reported to be extremely painful. In order to understand the toxinology of the Brazilian urchins, a peptidomic approach was performed aiming to characterize the naturally occurring peptides in both the coelomic fluid and the spine. Methods Animals were collected without gender distinction and samples of the coelomic fluid and spines extracted were analyzed by RP-HPLC and mass spectrometry for peptide de novo sequencing. Results Several peptides were identified either in the coelomic fluid or the spine extract (except for E. lucunter). The peptide sequences were aligned with public deposited sequences and possible functions were inferred. Moreover, some peptides can be cryptides, since their sequences were identified within functional proteins, for example thymosin from Strongylocentrotus purpuratus. Conclusions Although preliminary, the peptidomic approach presented here reports, for the first time, the abundance of novel biological molecules derived from these animals. The discovery of such molecules may be of potential biotechnological application, as described for other organisms; nevertheless, further studies are required.


Assuntos
Animais , Arbacia/classificação , Arbacia/química , Lytechinus/classificação , Lytechinus/química , Peptídeos/análise , Peptídeos/química
10.
J. venom. anim. toxins incl. trop. dis ; 20: 48, 04/02/2014. tab, ilus, mapas, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954728

Resumo

Background Scorpion venoms are rich bioactive peptide libraries that offer promising molecules that may lead to the discovery and development of new drugs.Leiurus abdullahbayrami produces one of the most potent venoms among Turkish scorpions that provokes severe symptoms in envenomated victims.Methods In the present study, the peptide profile of the venom was investigated by electrophoretic methods, size-exclusion and reversed-phase chromatography and mass spectroscopy. Cytotoxic and antimicrobial effects were evaluated on a breast cancer cell line (MCF-7) and various bacterial and fungal species.Results Proteins make up approximately half of the dry weight of L. abdullahbayrami crude venom. Microfluidic capillary electrophoresis indicated the presence of 6 to 7 kDa peptides and proved to be a highly practical peptidomics tool with better resolution when compared to conventional polyacrylamide gel electrophoresis. Mass spectroscopy analysis helped us to identify 45 unique peptide masses between 1 to 7 kDa with a bimodal mass distribution peaking between molecular weights of 1 to 2 kDa (29%) and 3 to 4 kDa (31%). L. abdullahbayrami crude venom had a proliferative effect on MCF-7 cells, which may be explained by the high concentration of polyamines as well as potassium and calcium ions in the arachnid venoms. Antimicrobial effect was stronger on gram-negative bacteria.Conclusions This work represents the first peptidomic characterization of L. abdullahbayrami venom. Considering the molecular weight-function relationship of previously identified venom peptides, future bioactivity studies may lead to the discovery of novel potassium and chloride ion channel inhibitors as well as new antimicrobial peptides fromL. abdullahbayrami venom.(AU)


Assuntos
Animais , Peptídeos , Venenos de Escorpião , Escorpiões , Eletroforese Capilar , Biblioteca de Peptídeos
11.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 20: 1-8, 2014. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-18270

Resumo

Background Scorpion venoms are rich bioactive peptide libraries that offer promising molecules that may lead to the discovery and development of new drugs.Leiurus abdullahbayrami produces one of the most potent venoms among Turkish scorpions that provokes severe symptoms in envenomated victims.Methods In the present study, the peptide profile of the venom was investigated by electrophoretic methods, size-exclusion and reversed-phase chromatography and mass spectroscopy. Cytotoxic and antimicrobial effects were evaluated on a breast cancer cell line (MCF-7) and various bacterial and fungal species.Results Proteins make up approximately half of the dry weight of L. abdullahbayrami crude venom. Microfluidic capillary electrophoresis indicated the presence of 6 to 7 kDa peptides and proved to be a highly practical peptidomics tool with better resolution when compared to conventional polyacrylamide gel electrophoresis. Mass spectroscopy analysis helped us to identify 45 unique peptide masses between 1 to 7 kDa with a bimodal mass distribution peaking between molecular weights of 1 to 2 kDa (29%) and 3 to 4 kDa (31%). L. abdullahbayrami crude venom had a proliferative effect on MCF-7 cells, which may be explained by the high concentration of polyamines as well as potassium and calcium ions in the arachnid venoms. Antimicrobial effect was stronger on gram-negative bacteria.Conclusions This work represents the first peptidomic characterization of L. abdullahbayrami venom. Considering the molecular weight-function relationship of previously identified venom peptides, future bioactivity studies may lead to the discovery of novel potassium and chloride ion channel inhibitors as well as new antimicrobial peptides fromL. abdullahbayrami venom.(AU)


Assuntos
Animais , Venenos de Escorpião/química , Biblioteca de Peptídeos , Peptídeos/química , Anti-Infecciosos/síntese química , Eletroforese Capilar/métodos , Técnicas Analíticas Microfluídicas/métodos
12.
J. venom. anim. toxins incl. trop. dis ; 20: 1-8, 04/02/2014. ilus, tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484601

Resumo

Background Scorpion venoms are rich bioactive peptide libraries that offer promising molecules that may lead to the discovery and development of new drugs.Leiurus abdullahbayrami produces one of the most potent venoms among Turkish scorpions that provokes severe symptoms in envenomated victims.Methods In the present study, the peptide profile of the venom was investigated by electrophoretic methods, size-exclusion and reversed-phase chromatography and mass spectroscopy. Cytotoxic and antimicrobial effects were evaluated on a breast cancer cell line (MCF-7) and various bacterial and fungal species.Results Proteins make up approximately half of the dry weight of L. abdullahbayrami crude venom. Microfluidic capillary electrophoresis indicated the presence of 6 to 7 kDa peptides and proved to be a highly practical peptidomics tool with better resolution when compared to conventional polyacrylamide gel electrophoresis. Mass spectroscopy analysis helped us to identify 45 unique peptide masses between 1 to 7 kDa with a bimodal mass distribution peaking between molecular weights of 1 to 2 kDa (29%) and 3 to 4 kDa (31%). L. abdullahbayrami crude venom had a proliferative effect on MCF-7 cells, which may be explained by the high concentration of polyamines as well as potassium and calcium ions in the arachnid venoms. Antimicrobial effect was stronger on gram-negative bacteria.Conclusions This work represents the first peptidomic characterization of L. abdullahbayrami venom. Considering the molecular weight-function relationship of previously identified venom peptides, future bioactivity studies may lead to the discovery of novel potassium and chloride ion channel inhibitors as well as new antimicrobial peptides fromL. abdullahbayrami venom.


Assuntos
Animais , Anti-Infecciosos/síntese química , Biblioteca de Peptídeos , Peptídeos/química , Venenos de Escorpião/química , Eletroforese Capilar/métodos , Técnicas Analíticas Microfluídicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA