Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J. venom. anim. toxins incl. trop. dis ; 27: e20200068, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1154772

Resumo

Maintenance of snakes at Butantan Institute started in the last century, intending to produce a different antivenom serum to reduce death caused by snakebites. Through a successful campaign coordinated by Vital Brazil, farmers sent venomous snakes to Butantan Institute by the railway lines with no cost. From 1908 to 1962, the snakes were kept in an outdoor serpentarium, where venom extraction was performed every 15 days. During this period, the snake average survival was 15 days. In 1963, the snakes were transferred to an adapted building, currently called Laboratory of Herpetology (LH), to be maintained in an intensive system. Although the periodicity of venom extraction remained the same, animal average survival increased to two months. With the severe serum crisis in 1983, the Ministry of Health financed remodeling for the three public antivenom producers, and with this support, the LH could be improved. Air conditioning and exhausting systems were installed in the rooms, besides the settlement of critical hygienic-sanitary managements to increase the welfare of snakes. In the early 1990s, snake survival was ten months. Over the years to the present day, several improvements have been made in the intensive serpentarium, as the establishment of two quarantines, feeding with thawed rodents, an interval of two months between venom extraction routines, and monitoring of snake health through laboratory tests. With these new protocols, average snake survival increased significantly, being eight years for the genus Bothrops, ten years for genus Crotalus and Lachesis, and four years for the genus Micrurus. Aiming the production of venoms of good quality, respect for good management practices is essential for the maintenance of snakes in captivity. New techniques and efficient management must always be sought to improve animal welfare, the quality of the venom produced, and the safety of those working directly with the venomous snakes.(AU)


Assuntos
Animais , Mordeduras de Serpentes , Viperidae , Venenos Elapídicos/biossíntese , Bem-Estar do Animal , Custos e Análise de Custo
2.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 27: e20200068, 2021. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-31985

Resumo

Maintenance of snakes at Butantan Institute started in the last century, intending to produce a different antivenom serum to reduce death caused by snakebites. Through a successful campaign coordinated by Vital Brazil, farmers sent venomous snakes to Butantan Institute by the railway lines with no cost. From 1908 to 1962, the snakes were kept in an outdoor serpentarium, where venom extraction was performed every 15 days. During this period, the snake average survival was 15 days. In 1963, the snakes were transferred to an adapted building, currently called Laboratory of Herpetology (LH), to be maintained in an intensive system. Although the periodicity of venom extraction remained the same, animal average survival increased to two months. With the severe serum crisis in 1983, the Ministry of Health financed remodeling for the three public antivenom producers, and with this support, the LH could be improved. Air conditioning and exhausting systems were installed in the rooms, besides the settlement of critical hygienic-sanitary managements to increase the welfare of snakes. In the early 1990s, snake survival was ten months. Over the years to the present day, several improvements have been made in the intensive serpentarium, as the establishment of two quarantines, feeding with thawed rodents, an interval of two months between venom extraction routines, and monitoring of snake health through laboratory tests. With these new protocols, average snake survival increased significantly, being eight years for the genus Bothrops, ten years for genus Crotalus and Lachesis, and four years for the genus Micrurus. Aiming the production of venoms of good quality, respect for good management practices is essential for the maintenance of snakes in captivity. New techniques and efficient management must always be sought to improve animal welfare, the quality of the venom produced, and the safety of those working directly with the venomous snakes.(AU)


Assuntos
Animais , Mordeduras de Serpentes , Viperidae , Venenos Elapídicos/biossíntese , Bem-Estar do Animal , Custos e Análise de Custo
3.
J. venom. anim. toxins incl. trop. dis ; 26: e20190044, 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1091017

Resumo

Abstract Background: Endogenous phospholipase A2 inhibitors from snake blood (sbPLIs) have been isolated from several species around the world, with the primary function of self-protection against the action of toxic phospholipases A2. In American snakes, sbPLIs were solely described in pit vipers, in which the natural protection role is justified. In this study, we described a sbPLI in Boa constrictor (popularly known as jiboia), a non-venomous snake species from America. Methods: PLA2 inhibitory activity was tested in the blood plasma of B. constrictor using C. d. terrificus venom as the enzyme source. Antibodies developed against CNF, a sbγPLI from Crotalus durissus terrificus, were used to investigate the presence of homologues in the blood plasma of B. constrictor. A CNF-like molecule with a PLA2 inhibitory activity was purified by column chromatography. The encoding gene for the inhibitor was cloned from B. constrictor liver tissue. The DNA fragment was cloned, purified and sequenced. The deduced primary sequence of interest was aligned with known sbγPLIs from the literature. Results: The blood plasma of B. constrictor displayed PLA2 inhibitory activity. A CNF-like molecule (named BcNF) was identified and purified from the blood plasma of B. constrictor. Basic properties such as molecular mass, composing amino acids, and pI were comparable, but BcNF displayed reduced specific activity in PLA2 inhibition. BcNF showed highest identity scores (ISs) with sbγPLIs from pit vipers from Latin America (90-100%), followed by gamma inhibitors from Asian viperid (80-90%). ISs below 70% were obtained for BcNF and non-venomous species from Asia. Conclusion: A functional sbγPLI (BcNF) was described in the blood plasma of B. constrictor. BcNF displayed higher primary identity with sbγPLIs from Viperidae than to sbγPLIs from non-venomous species from Asia. The physiological role played by sbγPLIs in non-venomous snake species remains to be understood. Further investigation is needed.(AU)


Assuntos
Animais , Serpentes , Viperidae , Venenos Elapídicos , Fosfolipases A2 , Inibidores de Fosfolipase A2
4.
J. venom. anim. toxins incl. trop. dis ; 26: e20200057, 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1143218

Resumo

Certain environmental toxins permanently damage the thymic epithelium, accelerate immune senescence and trigger secondary immune pathologies. However, the exact underlying cellular mechanisms and pathways of permanent immune intoxication remain unknown. The aim of the present study was to demonstrate gene expressional changes of apoptosis-related cellular pathways in human thymic epithelial cells following exposure to snake venom from Bitis gabonica and Dendroaspis angusticeps. Methods: Snake venoms were characterized by analytical methods including reversed phase high-performance liquid chromatography and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, then applied on human thymic epithelial cells (1889c) for 24 h at 10 μg/mL (as used in previous TaqMan Array study). Gene expressional changes restricted to apoptosis were assayed by TaqMan Array (Human Apoptosis Plate). Results: The most prominent gene expressional changes were shown by CASP5 (≈ 2.5 million-fold, confirmed by dedicated quantitative polymerase chain reaction) and CARD9 (0.016-fold) for B. gabonica, and BIRC7 (6.46-fold) and CASP1 (0.30-fold) for D. angusticeps. Conclusion: The observed apoptotic environment suggests that pyroptosis may be the dominant pathway through which B. gabonica and D. angusticeps snake venoms trigger thymic epithelial apoptosis following envenomation.(AU)


Assuntos
Animais , Venenos de Serpentes/efeitos adversos , Reação em Cadeia da Polimerase , Apoptose , Viperidae/genética , Células Epiteliais/química , Piroptose , Métodos de Análise Laboratorial e de Campo , Eletroforese em Gel de Poliacrilamida
5.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200057, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32055

Resumo

Certain environmental toxins permanently damage the thymic epithelium, accelerate immune senescence and trigger secondary immune pathologies. However, the exact underlying cellular mechanisms and pathways of permanent immune intoxication remain unknown. The aim of the present study was to demonstrate gene expressional changes of apoptosis-related cellular pathways in human thymic epithelial cells following exposure to snake venom from Bitis gabonica and Dendroaspis angusticeps. Methods: Snake venoms were characterized by analytical methods including reversed phase high-performance liquid chromatography and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, then applied on human thymic epithelial cells (1889c) for 24 h at 10 μg/mL (as used in previous TaqMan Array study). Gene expressional changes restricted to apoptosis were assayed by TaqMan Array (Human Apoptosis Plate). Results: The most prominent gene expressional changes were shown by CASP5 (≈ 2.5 million-fold, confirmed by dedicated quantitative polymerase chain reaction) and CARD9 (0.016-fold) for B. gabonica, and BIRC7 (6.46-fold) and CASP1 (0.30-fold) for D. angusticeps. Conclusion: The observed apoptotic environment suggests that pyroptosis may be the dominant pathway through which B. gabonica and D. angusticeps snake venoms trigger thymic epithelial apoptosis following envenomation.(AU)


Assuntos
Animais , Venenos de Serpentes/análise , Venenos de Serpentes/genética , Apoptose/genética , Células Epiteliais , Piroptose , Viperidae , Elapidae
6.
J. venom. anim. toxins incl. trop. dis ; 26: e20200056, 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135145

Resumo

The venom of bamboo vipers (Trimeresurus stejnegeri - TS), commonly found in Taiwan, contains deadly hemotoxins that cause severe envenomation. Equine-derived antivenom is a specific treatment against snakebites, but its production costs are high and there are some inevitable side effects. The aim of the present work is to help in the development of an affordable and more endurable therapeutic strategy for snakebites. Methods: T. stejnegeri venom proteins were inactivated by glutaraldehyde in order to immunize hens for polyclonal immunoglobulin (IgY) antibodies production. After IgY binding assays, two antibody libraries were constructed expressing single-chain variable fragment (scFv) antibodies joined by the short or long linker for use in phage display antibody technology. Four rounds of biopanning were carried out. The selected scFv antibodies were then further tested for their binding activities and neutralization assays to TS proteins. Results: Purified IgY from egg yolk showed the specific binding ability to TS proteins. The dimensions of these two libraries contain 2.4 × 107 and 6.8 × 107 antibody clones, respectively. An increase in the titers of eluted phage indicated anti-TS clones remarkably enriched after 2nd panning. The analysis based on the nucleotide sequences of selected scFv clones indicated that seven groups of short linkers and four groups of long linkers were identified. The recombinant scFvs showed significant reactivity to TS venom proteins and a cross-reaction to Trimeresurus mucrosquamatus venom proteins. In in vivo studies, the data demonstrated that anti-TS IgY provided 100% protective effects while combined scFvs augmented partial survival time of mice injected with a lethal amount of TS proteins. Conclusion: Chickens were excellent hosts for the production of neutralization antibodies at low cost. Phage display technology is available for generation of monoclonal antibodies against snake venom proteins. These antibodies could be applied in the development of diagnostic kits or as an alternative for snakebite envenomation treatment in the near future.(AU)


Assuntos
Animais , Venenos de Serpentes , Antivenenos , Galinhas , Trimeresurus , Anticorpos , Bacteriófagos
7.
J. venom. anim. toxins incl. trop. dis ; 26: e20200013, 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135156

Resumo

The Asiatic pit vipers from the Trimeresurus complex are medically important venomous snakes. These pit vipers are often associated with snakebite that leads to fatal coagulopathy and tissue necrosis. The cytotoxic venoms of Trimeresurus spp.; however, hold great potential for the development of peptide-based anticancer drugs. Methods: This study investigated the cytotoxic effect of the venom from Trimeresurus purpureomaculatus, the mangrove pit viper (also known as shore pit viper) which is native in Malaysia, across a panel of human cancer cell lines from breast, lung, colon and prostate as well as the corresponding normal cell lines of each tissue. Results: The venom exhibited dose-dependent cytotoxic activities on all cell lines tested, with median inhibition concentrations (IC50) ranging from 0.42 to 6.98 µg/mL. The venom has a high selectivity index (SI = 14.54) on breast cancer cell line (MCF7), indicating that it is significantly more cytotoxic toward the cancer than to normal cell lines. Furthermore, the venom was fractionated using C18 reversed-phase high-performance liquid chromatography and the anticancer effect of each protein fraction was examined. Fraction 1 that contains a hydrophilic low molecular weight (approximately 7.5 kDa) protein was found to be the most cytotoxic and selective toward the breast cancer cell line (MCF7). The protein was identified using liquid chromatography-tandem mass spectrometry as a venom disintegrin, termed purpureomaculin in this study. Conclusion: Taken together, the findings revealed the potent and selective cytotoxicity of a disintegrin protein isolated from the Malaysian T. purpureomaculatus venom and suggested its anticancer potential in drug discovery.(AU)


Assuntos
Animais , Trimeresurus , Desintegrinas , Citotoxicidade Imunológica , Neoplasias , Venenos de Víboras , Antineoplásicos
8.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20190044, Mar. 13, 2020. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-25595

Resumo

Background:Endogenous phospholipase A2 inhibitors from snake blood (sbPLIs) have been isolated from several species around the world, with the primary function of self-protection against the action of toxic phospholipases A2. In American snakes, sbPLIs were solely described in pit vipers, in which the natural protection role is justified. In this study, we described a sbPLI in Boa constrictor (popularly known as jiboia), a non-venomous snake species from America.Methods:PLA2 inhibitory activity was tested in the blood plasma of B. constrictor using C. d. terrificus venom as the enzyme source. Antibodies developed against CNF, a sbγPLI from Crotalus durissus terrificus, were used to investigate the presence of homologues in the blood plasma of B. constrictor. A CNF-like molecule with a PLA2 inhibitory activity was purified by column chromatography. The encoding gene for the inhibitor was cloned from B. constrictor liver tissue. The DNA fragment was cloned, purified and sequenced. The deduced primary sequence of interest was aligned with known sbγPLIs from the literature.Results:The blood plasma of B. constrictor displayed PLA2 inhibitory activity. A CNF-like molecule (named BcNF) was identified and purified from the blood plasma of B. constrictor. Basic properties such as molecular mass, composing amino acids, and pI were comparable, but BcNF displayed reduced specific activity in PLA2 inhibition. BcNF showed highest identity scores (ISs) with sbγPLIs from pit vipers from Latin America (90-100%), followed by gamma inhibitors from Asian viperid (80-90%). ISs below 70% were obtained for BcNF and non-venomous species from Asia.Conclusion:A functional sbγPLI (BcNF) was described in the blood plasma of B. constrictor. BcNF displayed higher primary identity with sbγPLIs from Viperidae than...(AU)


Assuntos
Animais , Inibidores de Fosfolipase A2/análise , Boidae , Fosfolipases A2 , Venenos de Crotalídeos/análise , Venenos de Crotalídeos/química
9.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200056, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32273

Resumo

The venom of bamboo vipers (Trimeresurus stejnegeri - TS), commonly found in Taiwan, contains deadly hemotoxins that cause severe envenomation. Equine-derived antivenom is a specific treatment against snakebites, but its production costs are high and there are some inevitable side effects. The aim of the present work is to help in the development of an affordable and more endurable therapeutic strategy for snakebites. Methods: T. stejnegeri venom proteins were inactivated by glutaraldehyde in order to immunize hens for polyclonal immunoglobulin (IgY) antibodies production. After IgY binding assays, two antibody libraries were constructed expressing single-chain variable fragment (scFv) antibodies joined by the short or long linker for use in phage display antibody technology. Four rounds of biopanning were carried out. The selected scFv antibodies were then further tested for their binding activities and neutralization assays to TS proteins. Results: Purified IgY from egg yolk showed the specific binding ability to TS proteins. The dimensions of these two libraries contain 2.4 × 107 and 6.8 × 107 antibody clones, respectively. An increase in the titers of eluted phage indicated anti-TS clones remarkably enriched after 2nd panning. The analysis based on the nucleotide sequences of selected scFv clones indicated that seven groups of short linkers and four groups of long linkers were identified. The recombinant scFvs showed significant reactivity to TS venom proteins and a cross-reaction to Trimeresurus mucrosquamatus venom proteins. In in vivo studies, the data demonstrated that anti-TS IgY provided 100% protective effects while combined scFvs augmented partial survival time of mice injected with a lethal amount of TS proteins. Conclusion: Chickens were excellent hosts for the production of neutralization antibodies at low cost. Phage display technology is available for generation of monoclonal antibodies against snake venom proteins. These antibodies could be applied in the development of diagnostic kits or as an alternative for snakebite envenomation treatment in the near future.(AU)


Assuntos
Animais , Galinhas/imunologia , Venenos de Serpentes , Trimeresurus/imunologia , Antivenenos/análise , Antivenenos/imunologia
10.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200013, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32208

Resumo

The Asiatic pit vipers from the Trimeresurus complex are medically important venomous snakes. These pit vipers are often associated with snakebite that leads to fatal coagulopathy and tissue necrosis. The cytotoxic venoms of Trimeresurus spp.; however, hold great potential for the development of peptide-based anticancer drugs. Methods: This study investigated the cytotoxic effect of the venom from Trimeresurus purpureomaculatus, the mangrove pit viper (also known as shore pit viper) which is native in Malaysia, across a panel of human cancer cell lines from breast, lung, colon and prostate as well as the corresponding normal cell lines of each tissue. Results: The venom exhibited dose-dependent cytotoxic activities on all cell lines tested, with median inhibition concentrations (IC50) ranging from 0.42 to 6.98 µg/mL. The venom has a high selectivity index (SI = 14.54) on breast cancer cell line (MCF7), indicating that it is significantly more cytotoxic toward the cancer than to normal cell lines. Furthermore, the venom was fractionated using C18 reversed-phase high-performance liquid chromatography and the anticancer effect of each protein fraction was examined. Fraction 1 that contains a hydrophilic low molecular weight (approximately 7.5 kDa) protein was found to be the most cytotoxic and selective toward the breast cancer cell line (MCF7). The protein was identified using liquid chromatography-tandem mass spectrometry as a venom disintegrin, termed purpureomaculin in this study. Conclusion: Taken together, the findings revealed the potent and selective cytotoxicity of a disintegrin protein isolated from the Malaysian T. purpureomaculatus venom and suggested its anticancer potential in drug discovery.(AU)


Assuntos
Animais , Venenos de Víboras/análise , Venenos de Víboras/química , Venenos de Víboras/toxicidade , Citotoxinas/análise , Desintegrinas/análise , Trimeresurus
11.
J. venom. anim. toxins incl. trop. dis ; 26: e20200053, 2020. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135159

Resumo

Snakebites remain a major life-threatening event worldwide. It is still difficult to make a positive identification of snake species by clinicians in both Western medicine and Chinese medicine. The main reason for this is a shortage of diagnostic biomarkers and lack of knowledge about pathways of venom-induced toxicity. In traditional Chinese medicine, snakebites are considered to be treated with wind, fire, and wind-fire toxin, but additional studies are required. Methods: Cases of snakebite seen at the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine were grouped as follows: fire toxin - including four cases of bites by Agkistrodon acutus and three bites by Trimeresurus stejnegeri - and wind-fire toxin - four cases of bites by vipers and three bites by cobras. Serum protein quantification was performed using LC-MS/MS. Differential abundance proteins (DAPs) were identified from comparison of snakebites of each snake species and healthy controls. The protein interaction network was constructed using STITCH database. Results: Principal component analysis and hierarchical clustering of 474 unique proteins exhibited protein expression profiles of wind-fire toxins that are distinct from that of fire toxins. Ninety-three DAPs were identified in each snakebite subgroup as compared with healthy control, of which 38 proteins were found to have significantly different expression levels and 55 proteins displayed no expression in one subgroup, by subgroup comparison. GO analysis revealed that the DAPs participated in bicarbonate/oxygen transport and hydrogen peroxide catabolic process, and affected carbon-oxygen lyase activity and heme binding. Thirty DAPs directly or indirectly acted on hydrogen peroxide in the interaction network of proteins and drug compounds. The network was clustered into four groups: lipid metabolism and transport; IGF-mediated growth; oxygen transport; and innate immunity. Conclusions: Our results show that the pathways of snake venom-induced toxicity may form a protein network of antioxidant defense by regulating oxidative stress through interaction with hydrogen peroxide.(AU)


Assuntos
Animais , Venenos de Serpentes , Biomarcadores , Estresse Oxidativo , Peróxido de Hidrogênio , Antioxidantes , Trimeresurus , Proteoma/análise
12.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200053, 2020. graf
Artigo em Inglês | VETINDEX | ID: vti-32212

Resumo

Snakebites remain a major life-threatening event worldwide. It is still difficult to make a positive identification of snake species by clinicians in both Western medicine and Chinese medicine. The main reason for this is a shortage of diagnostic biomarkers and lack of knowledge about pathways of venom-induced toxicity. In traditional Chinese medicine, snakebites are considered to be treated with wind, fire, and wind-fire toxin, but additional studies are required. Methods: Cases of snakebite seen at the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine were grouped as follows: fire toxin - including four cases of bites by Agkistrodon acutus and three bites by Trimeresurus stejnegeri - and wind-fire toxin - four cases of bites by vipers and three bites by cobras. Serum protein quantification was performed using LC-MS/MS. Differential abundance proteins (DAPs) were identified from comparison of snakebites of each snake species and healthy controls. The protein interaction network was constructed using STITCH database. Results: Principal component analysis and hierarchical clustering of 474 unique proteins exhibited protein expression profiles of wind-fire toxins that are distinct from that of fire toxins. Ninety-three DAPs were identified in each snakebite subgroup as compared with healthy control, of which 38 proteins were found to have significantly different expression levels and 55 proteins displayed no expression in one subgroup, by subgroup comparison. GO analysis revealed that the DAPs participated in bicarbonate/oxygen transport and hydrogen peroxide catabolic process, and affected carbon-oxygen lyase activity and heme binding. Thirty DAPs directly or indirectly acted on hydrogen peroxide in the interaction network of proteins and drug compounds. The network was clustered into four groups: lipid metabolism and transport; IGF-mediated growth; oxygen transport; and innate immunity. Conclusions: Our results show that the pathways of snake venom-induced toxicity may form a protein network of antioxidant defense by regulating oxidative stress through interaction with hydrogen peroxide.(AU)


Assuntos
Animais , Venenos de Serpentes/análise , Venenos de Serpentes/toxicidade , Estresse Oxidativo , Antioxidantes/análise , Peróxido de Hidrogênio/análise , Proteoma
13.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 25: e.20190009, Sep. 16, 2019. ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-24668

Resumo

Background:Several studies have pointed out that certain snake venoms contain compounds presenting cytotoxic activities that selectively interfere with cancer cell metabolism. In this study, Pseudocerastes persicus venom and its fractions were investigated for their anticancer potential on lung cancer cells.Methods:Lung cancer cells (A549) and normal fibroblast cells (Hu02) were treated with the P. persicus venom and its HPLC fractions and the cell cytotoxic effects were analyzed using MTT and lactate dehydrogenase release assays. Apoptosis was determined in venom-treated cell cultures using caspase-3 and caspase-9 assay kits.Results:The treatment of cells with HPLC fraction 21 (25-35 kDa) of P. persicus venom resulted in high LDH release in normal fibroblast cells and high caspase-3 and caspase-9 activities in lung cancer cells. These results indicate that fraction 21 induces apoptosis in cancer cells, whereas necrosis is predominantly caused by cell death in the normal cells. Fraction 21 at the final concentration of 10 μg/mL killed approximately 60% of lung cancer cells, while in normal fibroblast cells very low cell cytotoxic effect was observed.Conclusion:HPLC fraction 21 at low concentrations displayed promising anticancer properties with apoptosis induction in the lung cancer cells. This fraction may, therefore, be considered a promising candidate for further studies.(AU)


Assuntos
Animais , Viperidae , Venenos de Víboras/análise , Venenos de Víboras/toxicidade , Citotoxinas , Neoplasias/terapia , Cromatografia Líquida de Alta Pressão , Apoptose
14.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 24: 42, Jan. 24, 2018. ilus, mapas, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-18969

Resumo

Background:The blunt-nosed viperMacrovipera lebetina(Linnaeus, 1758) is a medically important snake species inthe Middle East. Its nominate subspeciesMacrovipera l. lebetinais confined to Cyprus, where it is the only dangerouslyvenomous snake species and heavily pursued. Despite the vipers large size, data on its body mass and sex-specificmorphological differences are scarce. It is commonly believed thatM. l. lebetinaprefers freshwater proximity duringsummer. Hence, we aimed at investigatingM. l. lebetinasex-specific morphological differences and its possibleattraction to freshwater bodies in late summer.Methods:Morphometric characteristics, proximity to water and conservation status ofM. l. lebetinawere investigatedin Paphos district (Cyprus) in 2014, 2015 and 2017. Vipers were caught in different habitats, examined morphologicallyfor metric and meristic characters, and released back into their habitat. Additionally, local people were interviewedabout the conservation situation of the species.Results:Of 38 recorded blunt-nosed vipers, morphological characteristics were collected from 34 (10 adult males, 16adult females, eight unsexed juveniles). Rounded total length (ToL) ranged from 23.5 cm to 133.0 cm and weightbetween 10 g and 1456 g. Adult males significantly exceeded adult females in tail length (TaL), ToL and head length(HL). No significant sex-specific differences were found in snout-vent length (SVL), head width (HW), weight or bodycondition index (BCI), nor for the ratios TaL / SVL, TaL / ToL, HL / SVL or HL / HW. Adult females from late summer(2015) had a significantly lower mean BCI than those from spring (2014).Distances of blunt-nosed vipers to the nearest water bodies (natural and artificial...(AU)


Assuntos
Animais , Viperidae/anatomia & histologia , Comportamento Animal , Água Doce , Peso Corporal , Mordeduras de Serpentes , Pesos e Medidas Corporais/veterinária , Chipre , Conservação dos Recursos Naturais
15.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 24: 32, Dec. 17, 2018. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-19373

Resumo

Background: Lachesis muta rhombeata (Lmr) is the largest venomous snake in Latin America and its venom contains mainly enzymatic components, such as serine and metalloproteases, L-amino acid oxidase and phospholipases A2. Metalloproteases comprise a large group of zinc-dependent proteases that cleave basement membrane components such as fibronectin, laminin and collagen type IV. These enzymes are responsible for local and systemic changes, including haemorrhage, myonecrosis and inflammation. This study aimed the isolation and enzymatic characterization of the first metalloprotease (Lmr-MP) from Lmr venom (LmrV). Methods and results: Lmr-MP was purified through two chromatographic steps and submitted to enzymatic characterization. It showed proteolytic activity on azocasein with maximum activity at pH 7.0-9.0. It was inhibited by EDTA (a metal chelator that removes zinc, which is essential for enzymatic activity) and no effect was observed with PMSF, iodoacetic acid or pepstatin (inhibitors of serine, cysteine and aspartyl proteases, respectively). Ca2+, Mg2+ and Ba2+ ions increased its activity, while Al3+, Cu2+, Ni2+ and Zn2+ inhibited it. Additionally, ZnCl2 showed a dose dependent inhibition of the enzyme. Lmr-MP activity was also evaluated upon chromogenic substrates for plasma kallikrein (S-2302), plasmin and streptokinase-activated plasminogen (S-2251) and Factor Xa (S-2222) showing the highest activity on S-2302. The activity in different solutions (5 mM or 50 mM ammonium bicarbonate, pH 7.8; 0.1% trifluoroacetic acid + 50% acetonitrile; phosphate buffer saline, pH 7.4; 50 mM sodium acetate, pH 4.0 or ammonium acetate pH 4.5) was also evaluated and the results showed that its activity was abolished at acidic pHs. Its molecular mass (22,858 Da) was determined by MALDI-TOF and about 90% of its primary structure was verified by high-resolution mass spectrometry... (AU)


Assuntos
Animais , Viperidae , Venenos de Víboras/análise , Venenos de Víboras/química , Enzimas , Metaloproteases/química
16.
J. venom. anim. toxins incl. trop. dis ; 24: 42, 2018. tab, graf, mapas
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-984694

Resumo

The blunt-nosed viper Macrovipera lebetina (Linnaeus, 1758) is a medically important snake species in the Middle East. Its nominate subspecies Macrovipera l. lebetina is confined to Cyprus, where it is the only dangerously venomous snake species and heavily pursued. Despite the viper's large size, data on its body mass and sex-specific morphological differences are scarce. It is commonly believed that M. l. lebetina prefers freshwater proximity during summer. Hence, we aimed at investigating M. l. lebetina sex-specific morphological differences and its possible attraction to freshwater bodies in late summer. Methods: Morphometric characteristics, proximity to water and conservation status of M. l. lebetina were investigated in Paphos district (Cyprus) in 2014, 2015 and 2017. Vipers were caught in different habitats, examined morphologically for metric and meristic characters, and released back into their habitat. Additionally, local people were interviewed about the conservation situation of the species. Results: Of 38 recorded blunt-nosed vipers, morphological characteristics were collected from 34 (10 adult males, 16 adult females, eight unsexed juveniles). Rounded total length (ToL) ranged from 23.5 cm to 133.0 cm and weight between 10 g and 1456 g. Adult males significantly exceeded adult females in tail length (TaL), ToL and head length (HL). No significant sex-specific differences were found in snout-vent length (SVL), head width (HW), weight or body condition index (BCI), nor for the ratios TaL / SVL, TaL / ToL, HL / SVL or HL / HW. Adult females from late summer (2015) had a significantly lower mean BCI than those from spring (2014). Distances of blunt-nosed vipers to the nearest water bodies (natural and artificial, respectively) did not differ significantly between spring (2014) and late summer (2015). There was also no significant difference between the distances of vipers to natural and to artificial water bodies in spring (and late summer). Conclusions: Adult male blunt-nosed vipers exceed adult females in TaL, ToL and HL. Adult females are likely in a more vulnerable body condition in late summer than in spring. Periodic drying out of freshwater bodies in summer probably does not affect the species' occurrence. Educational workshops and habitat conservation are recommended for reducing human-viper conflict.(AU)


Assuntos
Animais , Mordeduras de Serpentes , Serpentes , Água , Toxicophis pugnax , Ecossistema
17.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 24: 38, Jan. 24, 2018. ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-19378

Resumo

Background: Bitis arietans is a venomous snake found in sub-Saharan Africa and in parts of Morocco and Saudi Arabia. The envenomation is characterized by local and systemic reactions including pain, blistering, edema and tissue damage, besides hemostatic and cardiovascular disturbances, which can cause death or permanent disabilities in its victims. However, the action mechanisms that provoke these effects remain poorly understood, especially the activities of purified venom components. Therefore, in order to elucidate the molecular mechanisms that make the Bitis arietans venom so potent and harmful to human beings, this study reports the isolation and biochemical characterization of a snake venom serine protease (SVSP). Methods: Solubilized venom was fractionated by molecular exclusion chromatography and the proteolytic activity was determined using fluorescent substrates. The peaks that showed serine protease activity were determined by blocking the proteolytic activity with site-directed inhibitors. In sequence, the fraction of interest was submitted to another cycle of molecular exclusion chromatography. The purified serine protease was identified by mass spectrometry and characterized biochemically and immunochemically. Results: A serine protease of 33 kDa with fibrinogen-degrading and kinin-releasing activities was isolated, described, and designated herein as Kn-Ba. The experimental Butantan Institute antivenom produced against Bitis arietans venom inhibited the Kn-Ba activity. Conclusions: The in vitro activities of Kn-Ba can be correlated with the capacity of the venom to provoke bleeding and clotting disorders as well as hypotension, which are common symptoms presented by envenomed victims. Obtaining satisfactory Kn-Ba inhibition through the experimental antivenom is important, given the WHO's recommendation of immunotherapy in cases of human accidents with venomous snakes.(AU)


Assuntos
Animais , Viperidae , Venenos de Víboras/análise , Venenos de Víboras/química , Serina Proteases/análise , Cininas , Fibrinogênio , Antivenenos
18.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 24: 43, Jan. 24, 2018. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-18865

Resumo

Background:There are 6 species of venomous snakes in Taiwan. Two of them, Deinagkistrodon acutus (D. acutus) and Daboia siamensis (D. siamensis), can cause significant coagulopathy. However, a significant proportion of patients with snakebites cannot identify the correct snake species after envenomation, which hampers the application of antivenom. Hence, the differential diagnosis between the two snakebites by clinical presentations is important. This study aims to compare their clinical and laboratory features for the purpose of differential diagnosis between the two snakebites.Methods:We retrospectively reviewed the medical records of patients who arrived at the emergency department due to D. acutus or D. siamensis envenomation, between 2003 and 2016, in one medical center in eastern Taiwan. Since these snakebites are rare, we also included 3 cases reported from another hospital in central Taiwan.Results:In total, 15 patients bitten by D. acutus and 12 patients by D. siamensis were analyzed. Hemorrhagic bulla formation and the need for surgical intervention only presented for D. acutus envenomation cases (Both 53.3% vs. 0.0%, P= 0.003). As to laboratory features, lower platelet counts (20.0 × 103/μL [interquartile range, 14-66 × 103/μL] vs. 149.0 × 103/μL [102.3-274.3 × 103/μL], P = 0.001), lower D-dimer level (1423.4 μg/L [713.4-4212.3 μg/L] vs. 12,500.0 μg/L [2351.4-200,000 μg/L], P = 0.008), higher proportion of patients with moderate-to-severe thrombocytopenia (platelet count < 100 × 103/μL) (80% vs. 16.7%, odds ratio (OR) = 20.0, 95% CI, 2.77-144.31; P = 0.002), and lower proportion of patients with extremely high D-dimer (> 5000 ng/mL) (16.7% vs. 66.7%, adjusted OR = 0.1 (95% CI, 0.01-0.69; P = 0.036) were found a...(AU)


Assuntos
Humanos , Animais , Viperidae , Venenos de Víboras/análise , Venenos de Víboras/química , Mordeduras de Serpentes/cirurgia , Trombocitopenia , Transtornos da Coagulação Sanguínea , Taiwan
19.
J. venom. anim. toxins incl. trop. dis ; 23: 33, 2017. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954809

Resumo

Background: Venoms represent a still underexplored reservoir of bioactive components that might mitigate or cure diseases in conditions in which conventional therapy is ineffective. The bradykinin-potentiating peptides (BPPs) comprise a class of angiotensin-I converting enzyme (ACE) inhibitors. The BPPs usually consist of oligopeptides with 5 to 13 residues with a high number of proline residues and the tripeptide Ile-Pro-Pro (IPP-tripeptide) in the C-terminus region and have a conserved N-terminal pyroglutamate residue. As a whole, the action of the BPPs on prey and snakebite victims results in the decrease of the blood pressure. The aim of this work was to isolate and characterize novel BPPs from the venom of Bitis gabonica rhinoceros. Methods: The crude venom of B. g. rhinoceros was fractionated by size exclusion chromatography and the peptide fraction (<7 kDa) was separated by reverse phase chromatography (RP-HPLC) and analyzed by ESI-IT-TOF-MS/MS. One new BPP was identified, synthetized and assayed for ACE inhibition and, in vivo, for edema potentiation. Results: Typical BPP signatures were identified in three RP-HPLC fractions. CID fragmentation presented the usual y-ion of the terminal P-P fragment as a predominant signal at m/z 213.1. De novo peptide sequencing identified one Bothrops-like BPP and one new BPP sequence. The new BPP was synthesized and showed poor inhibition over ACE, but displayed significant bradykinin-induced edema potentiation. Conclusions: So far, few BPPs are described in Viperinae, and based on the sequenced peptides, two non-canonical sequences were detected. The possible clinical role of this new peptides remains unclear.(AU)


Assuntos
Animais , Oligopeptídeos , Peptídeos/isolamento & purificação , Bioquímica/classificação , Bradicinina , Viperidae , Bothrops
20.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 23: e33, 2017. graf, ilus
Artigo em Inglês | VETINDEX | ID: vti-33079

Resumo

Background: Venoms represent a still underexplored reservoir of bioactive components that might mitigate or cure diseases in conditions in which conventional therapy is ineffective. The bradykinin-potentiating peptides (BPPs) comprise a class of angiotensin-I converting enzyme (ACE) inhibitors. The BPPs usually consist of oligopeptides with 5 to 13 residues with a high number of proline residues and the tripeptide Ile-Pro-Pro (IPP-tripeptide) in the C-terminus region and have a conserved N-terminal pyroglutamate residue. As a whole, the action of the BPPs on prey and snakebite victims results in the decrease of the blood pressure. The aim of this work was to isolate and characterize novel BPPs from the venom of Bitis gabonica rhinoceros. Methods: The crude venom of B. g. rhinoceros was fractionated by size exclusion chromatography and the peptide fraction (<7 kDa) was separated by reverse phase chromatography (RP-HPLC) and analyzed by ESI-IT-TOF-MS/MS. One new BPP was identified, synthetized and assayed for ACE inhibition and, in vivo, for edema potentiation. Results: Typical BPP signatures were identified in three RP-HPLC fractions. CID fragmentation presented the usual y-ion of the terminal P-P fragment as a predominant signal at m/z 213.1. De novo peptide sequencing identified one Bothrops-like BPP and one new BPP sequence. The new BPP was synthesized and showed poor inhibition over ACE, but displayed significant bradykinin-induced edema potentiation. Conclusions: So far, few BPPs are described in Viperinae, and based on the sequenced peptides, two non-canonical sequences were detected. The possible clinical role of this new peptides remains unclear.(AU)


Assuntos
Animais , Oligopeptídeos , Peptídeos/isolamento & purificação , Bioquímica/classificação , Bradicinina , Viperidae , Bothrops
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA