Resumo
Purpose: Motor function is restored by axonal sprouting in ischemic stroke. Mitochondria play a crucial role in axonal sprouting. Taurine (TAU) is known to protect the brain against experimental stroke, but its role in axonal sprouting and the underlying mechanism are unclear. Methods: We evaluated the motor function of stroke mice using the rotarod test on days 7, 14, and 28. Immunocytochemistry with biotinylated dextran amine was used to detect axonal sprouting. We observed neurite outgrowth and cell apoptosis in cortical neurons under oxygen and glucose deprivation (OGD), respectively. Furthermore, we evaluated the mitochondrial function, adenosine triphosphate (ATP), mitochondrial DNA (mtDNA), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PCG-1α), transcription factor A of mitochondria (TFAM), protein patched homolog 1 (PTCH1), and cellular myelocytomatosis oncogene (c-Myc). Results: TAU recovered the motor function and promoted axonal sprouting in ischemic mice. TAU restored the neuritogenesis ability of cortical neurons and reduced OGD-induced cell apoptosis. TAU also reduced reactive oxygen species, stabilized mitochondrial membrane potential, enhanced ATP and mtDNA content, increased the levels of PGC-1α, and TFAM, and restored the impaired levels of PTCH1, and c-Myc. Furthermore, these TAU-related effects could be blocked using an Shh inhibitor (cyclopamine). Conclusion: Taurine promoted axonal sprouting via Shh-mediated mitochondrial improvement in ischemic stroke.
Assuntos
Animais , Camundongos , Taurina , Acidente Vascular Cerebral , MitocôndriasResumo
We describe a gland in the arthrodial membrane of the coxa-trochanter articulation in the fourth pair of legs in the Neotropical harvester Mischonyx squalidus Bertkau, 1880. Externally the glandular area has a rough appearance with pores on its surface, with folds of the arthrodial membrane. Internally, its secretory cells have spherical secretory vesicles, smooth endoplasmic reticulum, mitochondria and ducts that exit from the cells and cross the arthrodial membrane. Histochemical tests indicate the presence of proteins and neutral glycoproteins. The function of the gland might be to produce lubricating products that allow better movement of the coxa-trochanter region.
Assuntos
Humanos , Aracnídeos/anatomia & histologia , Lubrificação , Membranas/anatomia & histologiaResumo
L-carnitine perform a major role in transporting long-chain fatty acids into the mitochondria, where they are oxidized. It has been used in animal diets to decrease fat and increase muscle protein. The aim of this study was to evaluate the zootechnical performance, degree of steatosis in the liver, and genotoxic potential in Astyanax lacustris fed with different levels of L-carnitine (LC). Yellowtail tetra juveniles (n = 140) were distributed in 20 tanks of 70 L, with seven fish in each, in a water recirculation system with controlled temperature (27±0.1°C). The treatments with different levels of L-carnitine supplementation were: 0 (control), 250, 500, 750, and 1000 mg of LC per kg of food. The diets were provided twice a day for 60 days. The results showed that the different levels of LC did not affect (P>0.05) weight gain, survival, viscerosomatic index, and the liver hepatocytes showed a normal appearance. However, the use of LC supplementation showed genotoxic potential with a significant difference (P<0.05) for cell alterations when compared to the control at concentrations above 500mg kg-1.
A L-carnitina exerce um papel importante no transporte de ácidos graxos de cadeia longa até a mitocôndria para serem oxidados e tem sido incorporada em rações para animais com o objetivo de diminuir a deposição de gordura e aumentar a proteína muscular. O objetivo deste trabalho foi avaliar o desempenho zootécnico, o grau de esteatose no fígado e o potencial genotóxico em Astyanax lacustris alimentados com diferentes níveis de L-carnitina (LC). Juvenis de lambari-do-rabo-amarelo (n=140) foram distribuídos em 20 caixas de 70L, sete peixes em cada, em um sistema de recirculação de água com temperatura controlada (27±0,1°C). Os tratamentos com os níveis de suplementação foram: 0 (controle), 250, 500, 750 e 1000 mg de LC kg-1 de ração. As dietas foram fornecidas duas vezes ao dia, durante 60 dias. Os resultados mostraram que os diferentes níveis de LC não influenciaram (P>0,05) o ganho de peso; a sobrevivência, o índice viscerossomático e os hepatócitos do fígado apresentaram-se com aparência normal. No entanto, a suplementação com LC apresentou potencial genotóxico com diferença significativa (P<0,05) para alterações celulares quando comparada ao controle em concentrações superiores a 500mg kg-1.
Assuntos
Animais , Carnitina , Dieta/veterinária , Genotoxicidade , Fígado Gorduroso/veterinária , PeixesResumo
Purpose: Remote ischemic preconditioning (RIPC) confers cardioprotection against ischemia reperfusion (IR) injury. However, the precise mechanisms involved in RIPC-induced cardioprotection are not fully explored. The present study was aimed to identify the role of melatonin in RIPC-induced late cardioprotective effects in rats and to explore the role of H2 S, TNF-α and mitoKATP in melatoninmediated effects in RIPC. Methods: Wistar rats were subjected to RIPC in which hind limb was subjected to four alternate cycles of ischemia and reperfusion of 5 min duration by using a neonatal blood pressure cuff. After 24 h of RIPC or ramelteon-induced pharmacological preconditioning, hearts were isolated and subjected to IR injury on the Langendorff apparatus. Results: RIPC and ramelteon preconditioning protected the hearts from IR injury and it was assessed by a decrease in LDH-1, cTnT and increase in left ventricular developed pressure (LVDP). RIPC increased the melatonin levels (in plasma), H2 S (in heart) and decreased TNF-α levels. The effects of RIPC were abolished in the presence of melatonin receptor blocker (luzindole), ganglionic blocker (hexamethonium) and mitochondrial KATP blocker (5-hydroxydecanoic acid). Conclusion: RIPC produce delayed cardioprotection against IR injury through the activation of neuronal pathway, which may increase the plasma melatonin levels to activate the cardioprotective signaling pathway involving the opening of mitochondrial KATP channels, decrease in TNF-α production and increase in H2 S levels. Ramelteon-induced pharmacological preconditioning may also activate the cardioprotective signaling pathway involving the opening of mitochondrial KATP channels, decrease in TNF-α production and increase in H2 S levels.
Assuntos
Animais , Ratos , Troponina/fisiologia , Cardiotônicos , Precondicionamento Isquêmico , Melatonina/análise , Infarto do Miocárdio/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Ratos Wistar/fisiologia , MitocôndriasResumo
Purpose: To investigate the role of hypoxia-inducible transcription factor-1 alpha (HIF-1α) and angiogenetic factor endothelin-1 (ET-1) expression in regulating hypoxia and placental development by routine histopathological methods. Methods: Twenty preeclamptic and normal placentas were used. Placenta tissue pieces were examined histopathologically after routine paraffin follow-ups. HIF-1α and ET-1 proteins were examined immunohistochemically, and placental tissues were examined ultrastructurally. Results: Increase in syncytial proliferation, endothelial damage in vessels, and increase in collagen were observed in preeclamptic placentas. As a result of preeclampsia, an increase was observed in HIF-1α and ET-1 protein levels in the placenta. Dilatation of endoplasmic reticulum and loss of cristae in mitochondria were observed in trophoblast cells in preeclamptic placental sections. Conclusion: High regulation of oxygen resulting from preeclampsia has been shown to be a critical determinant of placentagenesis and plays an important role in placental differentiation, changes in maternal and fetal blood circulation, trophoblastic invasion, and syncytial node increase. It has been thought that preeclampsia affects secretion by disrupting the endoplasmic reticulum structure and induces mitochondrial damage, and that ET-1 may potentially help in the induction of stress pathways as a result of hypoxia in preeclampsia.
Assuntos
Placenta/fisiopatologia , Doenças Placentárias , Pré-Eclâmpsia , Endotelinas , Subunidade alfa do Fator 1 Induzível por Hipóxia , Imuno-HistoquímicaResumo
Sperm cells rely on different substrates to fulfil thei energy demand for different functions and diverse moments of their life. Species specific mechanism involve both energy substrate transport and their utilization: hexose transporters, a protein family of facilitative passive transporters of glucose and other hexose, have been identified in spermatozoa of different species and, within the species, their localization has been identified and, in some cases, linked to specific glycilitic enzyme presence. The catabolism of hexose sources for energy purposes has been studied in various species, and recent advances has been made in the knowledge of metabolic strategies of sperm cells. In particular, the importance of aerobic metabolism has been defined and described in horse, boar and even mouse spermatozoa; bull sperm cells demonstrate to have a good adaptability and capacity to switch between glycolysis and oxidative phosphorylation; finally, dog sperm cells have been demonstrated to have a great plasticity in energy metabolism management, being also able to activate the anabolic pathway of glycogen syntesis. In conclusion, the study of energy management and mitochondrial function in spermatozoa of different specie furnishes important base knowledge to define new media for preservation as well as newbases for reproductive biotechnologies.(AU)
Assuntos
Animais , Masculino , Sêmen/citologia , Mitocôndrias/fisiologia , Hexoses , MetabolismoResumo
Arsenic exposure is a global health concern. This toxic metalloid is ubiquitous in the environment and contaminates food and drinking water. Once ingested, it undergoes a complex metabolic process within the body, which contributes to its accumulation and reactivity. Arsenic toxicity stems from the induction of oxidative stress, inhibition of thiol-containing proteins, and mimicry of inorganic phosphates. Arsenic poisoning is associated with the development of reproductive disorders. In males, arsenic causes a reduction in testicular weight and alterations in steroidogenesis and spermatogenesis. Moreover, it reduces the number and quality of spermatozoa harvested from the cauda epididymis. The mitochondria are targets of arsenic toxicity because of the production of free radicals and their high content of cysteine-rich proteins and fatty acids. Mitochondrial dysfunction may contribute to reproductive disorders because this organelle is crucial for controlling testicular and epididymal events related to sperm production and maturation. All of these alterations mediated by arsenic exposure contribute to the failure of male reproductive competence by reducing gamete viability. This review describes the potential mechanisms of arsenic toxicity, its detrimental effects on male reproductive organs, and consequences on sperm fertility.(AU)
Assuntos
Humanos , Animais , Masculino , Intoxicação por Arsênico/diagnóstico , Fármacos para a Fertilidade Masculina/análise , Mitocôndrias/química , Estresse Oxidativo/fisiologia , Epididimo/químicaResumo
Abstract Neuroendocrine substances play essential roles in regulating the normal physiological functions of testicles. The purpose of this study is to explore the localization and effects of four neuroendocrine markers (NSE, SP, NFH and DβH) in normal and cryptorchid testes of Bactrian camels using western blotting, transmission electron microscopy, immunohistochemistry, and immunofluorescence methods. The results showed that cryptorchidism caused a reduction in layers of spermatogenic epithelium and decreased glycogen positivity in the basement membrane. The ultrastructure revealed that macrophages were always found around the Leydig cells, crowded with swelling mitochondria in cryptorchidism. Expression of NSE in the Leydig cells of cryptorchidism was significantly weakened compared to that in the normal group(p<0.01). We found that SP was always distributed along the nerve fibers in normal testes and was expressed in the Leydig cells of cryptorchidism. However, expression of NFH in the cryptorchidic tissue was strongly positive in the spermatogenic epithelium, with limited expression in Leydig cells and no expression in peritubular myoid cells. Therefore, the expression of DβH in the Sertoli cells was comparatively strong in both the normal and cryptorchidism groups. NFH and DβH expression was significantly increased in the cryptorchidism group compared with the normal group (p<0.01). These findings indicated that the underdeveloped seminiferous epithelium and pathological changes in cryptorchid tissue in Bactrian camels were potentially related to a disorder in glycoprotein metabolism. Our results suggest that NSE and SP could help judge the pathological changes of cryptorchidism. The present study provides the first evidence at the protein level for the existence of NFH and DβH in Sertoli and Leydig cells in Bactrian camel cryptorchidism and provides a more in-depth understanding of neuroendocrine regulation is crucial for animal cryptorchidism.
Resumo
Neuroendocrine substances play essential roles in regulating the normal physiological functions of testicles. The purpose of this study is to explore the localization and effects of four neuroendocrine markers (NSE, SP, NFH and DβH) in normal and cryptorchid testes of Bactrian camels using western blotting, transmission electron microscopy, immunohistochemistry, and immunofluorescence methods. The results showed that cryptorchidism caused a reduction in layers of spermatogenic epithelium and decreased glycogen positivity in the basement membrane. The ultrastructure revealed that macrophages were always found around the Leydig cells, crowded with swelling mitochondria in cryptorchidism. Expression of NSE in the Leydig cells of cryptorchidism was significantly weakened compared to that in the normal group(p<0.01). We found that SP was always distributed along the nerve fibers in normal testes and was expressed in the Leydig cells of cryptorchidism. However, expression of NFH in the cryptorchidic tissue was strongly positive in the spermatogenic epithelium, with limited expression in Leydig cells and no expression in peritubular myoid cells. Therefore, the expression of DβH in the Sertoli cells was comparatively strong in both the normal and cryptorchidism groups. NFH and DβH expression was significantly increased in the cryptorchidism group compared with the normal group (p<0.01). These findings indicated that the underdeveloped seminiferous epithelium and pathological changes in cryptorchid tissue in Bactrian camels were potentially related to a disorder in glycoprotein metabolism. Our results suggest that NSE and SP could help judge the pathological changes of cryptorchidism. The present study provides the first evidence at the protein level for the existence of NFH and DβH in Sertoli and Leydig cells in Bactrian camel cryptorchidism and provides a more in-depth understanding of neuroendocrine regulation is crucial for animal cryptorchidism.(AU)
Assuntos
Animais , Masculino , Camelus , Testículo/fisiologia , Expressão Gênica , Sistemas Neurossecretores , Imuno-HistoquímicaResumo
The aim of this study was to examine the effect of replacing the use of follicle-stimulating hormone (FSH) with equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG) on the in vitro maturation (IVM) of sheep oocytes. After sheep ovaries were collected (n=300), the cumulus-oocyte complexes were aspirated, selected, and divided into four groups according to the IVM medium: CON group, in which the basic IVM medium was used; and eCG, hCG, and FSH groups, in which the oocytes were immersed in basic IVM medium with 10 IU/mL eCG, 10 IU/mL hCG, and 10 µg/mL FSH-p, respectively. In vitro maturation of the oocytes was performed at 38.5 °C, in a humidified atmosphere of 5% CO2 in air, for 24 h. Subsequently, the oocytes were evaluated for the degree of cumulus-cell expansion, chromatin configuration, GSH levels, and active mitochondria. There were no significant differences for the rate of cumulus cell expansion. The percentage of oocytes in MII was higher in the eCG group than in the CON and hCG groups (P<0.05) and similar to that of the FSH group. In conclusion, eCG can be used as a substitute for FSH in IVM of sheep oocytes.
O objetivo deste estudo foi avaliar o efeito da gonadotrofina coriônica equina (eCG) e da gonadotrofina coriônica humana (hCG), em substituição ao uso de hormônio folículo estimulante (FSH) na maturação in vitro (MIV) de oócitos ovinos. Após a coleta de ovários (n=300) ovinos, os complexos cúmulus-oócitos (CCOs) foram aspirados, selecionados e divididos em quatro grupos de acordo com o meio de MIV: grupo CON, em que foi utilizado o meio MIV base; e grupos ECG, HCG e FSH, em que os oócitos foram imersos em meio MIV base adicionado de 10 UI/mL de eCG, 10 UI/mL de hCG e 10 µg/mL de FSH-p, respectivamente. A MIV dos oócitos foi realizada a 38,5°C, em atmosfera umidificada de 5% de CO2 em ar, durante 24 horas. Posteriormente, os oócitos foram avaliados, quanto grau de expansão das células do cumulus, configuração da cromatina, níveis de GSH e mitocôndrias ativas. Não foram observadas diferenças significativas com relação à taxa de expansão de células do cumulus. A percentagem de oócitos em MII foi maior no grupo ECG do que no grupo CON e HCG (P<0,05) e semelhante ao grupo FSH. Em conclusão, a eCG pode ser utilizada em substituição ao FSH na MIV de oócitos ovinos.
Assuntos
Animais , Ovinos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Hormônio Foliculoestimulante , Gonadotropina CoriônicaResumo
Abstract Coenzyme Q-10 (CoQ-10) is a cofactor for mitochondrial electron transport chain and may be an alternative to improve sperm quality of cryopreserved equine semen. This work aimed to improve stallion semen quality after freezing by adding CoQ-10 to the cryopreservation protocol. Seven saddle stallions were utilized. Each animal was submitted to five semen collections and freezing procedures. For cryopreservation, each ejaculate was divided in three treatments: 1) Botucrio® diluent (control); 2) 50 μmol CoQ-10 added to Botucrio® diluent; 3) 1 mmol CoQ-10 added to Botucrio® diluent. Semen batches were analyzed for sperm motility characteristics (CASA), plasma and acrosomal membranes integrity and mitochondrial membrane potential (by fluorescence probes propidium iodide, Hoechst 33342, FITC-PSA and JC-1, respectively), alterations in cytoskeletal actin (phalloidin-FITC) and mitochondrial function (diaminobenzidine; DAB). The 1 mmol CoQ-10 treatment presented higher (P<0.05) amount (66.8%) of sperm cells with fully stained midpiece (indicating high mitochondrial activity) and higher (P<0.05) amount (81.6%) of cells without actin reorganization to the post-acrosomal region compared to control group (60.8% and 76.0%, respectively). It was concluded that the addition of 1 mmol CoQ-10 to the freezing diluent was more effective in preserving mitochondria functionality and cytoskeleton of sperm cells submitted to cryopreservation process.
Resumo
Os primeiros estudos de espermatozoides com citometria de fluxo com espermatozoides iniciaram no final da década de 1970. Com os avanços tecnológicos, hoje contamos com equipamentos com alta sensibilidade e eficiência que, em conjunto com amplo catálogo de sondas fluorescentes, podemos mensurar com alta precisão características celulares. Como exemplo, destacam-se dano em membrana plasmática, atividade mitocondrial, produção de espécies reativas de oxigênio, dano ao DNA espermático e muito mais. Na presente revisão, as potencialidades e limitação para a implementação da citometria de fluxo na análise seminal de espécies domésticas são exploradas e comentadas.
The first flow cytometry studies with spermatozoa were published in the late 1970s. With the technological advances in the following years, today we have equipments with high sensitivity and efficiency that, together with a large number of commercially available fluorescent probes, allow us to measure different cell characteristics with high accuracy. Some of the most evaluated characteristics are plasma membrane damage, mitochondrial activity, production of reactive oxygen species, sperm DNA damage, and much more. In this review, the potentials and limitations for the implementation of flow cytometry in the seminal analysis of domestic species are explored and commented.
Assuntos
Animais , Andrologia/educação , Citometria de Fluxo/métodos , Citometria de Fluxo/veterinária , Dano ao DNA , Membrana Celular , Mitocôndrias/genéticaResumo
To determine the effect of Qingchang Oral Liquid (QOL) on second generation merozoite of chicken E. tenella, healthy Roman pink chickens were randomly divided into model group and QOL group (drug group), and both groups of chicks were inoculated with 5×104 sporulated oocysts by oral gavage. Then, the drug group was given QOL at a dose of 2.4 ml/kg, and the model group was given the same volume of normal saline. After 120 hours of inoculation, both groups of experimental chickens were killed at the same time, their caecum tissues were collected, the second generation merozoite were separated, the ultra-microstructure of the second generation merozoite were observed with transmission electron microscope and the mitochondrial membrane potential and apoptosis proportion of the second generation merozoite were analyzed with flow cytometer. The current results suggested that QOL could cause swelling and vacuoles of mitochondria, swelling of endoplasmic reticulum and damage of outer membrane in the second generation merozoite of E. tenella. Compared with the model group, the drug group could increase the total apoptosis rate of the second generation merozoite (p<0.01), and reduce the depolarization rate of mitochondrial membrane potential (p<0.01). Conclusion: QOL can directly affect the outer membrane and mitochondria of the second generation merozoite of E. tenella, reduce the depolarization rate of mitochondrial membrane potential of the second generation merozoite and increase the apoptosis rate of the second generation merozoite.(AU)
Assuntos
Animais , Feminino , Galinhas/crescimento & desenvolvimento , Galinhas/fisiologia , Merozoítos , ApoptoseResumo
To determine the effect of Qingchang Oral Liquid (QOL) on second generation merozoite of chicken E. tenella, healthy Roman pink chickens were randomly divided into model group and QOL group (drug group), and both groups of chicks were inoculated with 5×104 sporulated oocysts by oral gavage. Then, the drug group was given QOL at a dose of 2.4 ml/kg, and the model group was given the same volume of normal saline. After 120 hours of inoculation, both groups of experimental chickens were killed at the same time, their caecum tissues were collected, the second generation merozoite were separated, the ultra-microstructure of the second generation merozoite were observed with transmission electron microscope and the mitochondrial membrane potential and apoptosis proportion of the second generation merozoite were analyzed with flow cytometer. The current results suggested that QOL could cause swelling and vacuoles of mitochondria, swelling of endoplasmic reticulum and damage of outer membrane in the second generation merozoite of E. tenella. Compared with the model group, the drug group could increase the total apoptosis rate of the second generation merozoite (p<0.01), and reduce the depolarization rate of mitochondrial membrane potential (p<0.01). Conclusion: QOL can directly affect the outer membrane and mitochondria of the second generation merozoite of E. tenella, reduce the depolarization rate of mitochondrial membrane potential of the second generation merozoite and increase the apoptosis rate of the second generation merozoite.
Assuntos
Feminino , Animais , Apoptose , Galinhas/crescimento & desenvolvimento , Galinhas/fisiologia , MerozoítosResumo
The COVID-19 pandemic brought attention to studies about viral infections and their impact on the cell machinery. SARS-CoV-2, for example, invades the host cells by ACE2 interaction and possibly hijacks the mitochondria. To better understand the disease and to propose novel treatments, crucial aspects of SARS-CoV-2 enrolment with host mitochondria must be studied. The replicative process of the virus leads to consequences in mitochondrial function, and cell metabolism. The hijacking of mitochondria, on the other hand, can drive the extrusion of mitochondrial DNA (mtDNA) to the cytosol. Extracellular mtDNA evoke robust proinflammatory responses once detected, that may act in different pathways, eliciting important immune responses. However, few receptors are validated and are able to detect and respond to mtDNA. In this review, we propose that the mtDNA and its detection might be important in the immune process generated by SARS-CoV-2 and that this mechanism might be important in the lung pathogenesis seen in clinical symptoms. Therefore, investigating the mtDNA receptors and their signaling pathways might provide important clues for therapeutic interventions.(AU)
Assuntos
DNA/análise , Genes Mitocondriais , COVID-19 , CitocinasResumo
The COVID-19 pandemic brought attention to studies about viral infections and their impact on the cell machinery. SARS-CoV-2, for example, invades the host cells by ACE2 interaction and possibly hijacks the mitochondria. To better understand the disease and to propose novel treatments, crucial aspects of SARS-CoV-2 enrolment with host mitochondria must be studied. The replicative process of the virus leads to consequences in mitochondrial function, and cell metabolism. The hijacking of mitochondria, on the other hand, can drive the extrusion of mitochondrial DNA (mtDNA) to the cytosol. Extracellular mtDNA evoke robust proinflammatory responses once detected, that may act in different pathways, eliciting important immune responses. However, few receptors are validated and are able to detect and respond to mtDNA. In this review, we propose that the mtDNA and its detection might be important in the immune process generated by SARS-CoV-2 and that this mechanism might be important in the lung pathogenesis seen in clinical symptoms. Therefore, investigating the mtDNA receptors and their signaling pathways might provide important clues for therapeutic interventions.(AU)
Assuntos
DNA/análise , Genes Mitocondriais , COVID-19 , CitocinasResumo
This study aimed to evaluate the ultrastructural morphometry of bovine embryos produced in vitro grown at different concentrations of antioxidants. After in vitro maturation and fertilization, the presumptive zygotes were assigned into five treatments. T1) without the addition of any antioxidants (negative control); T2) addition of 50µM/mL cysteamine; and T3, T4 and T5) adding 2.5µg/mL, 5.0µg/mL or 10.0µg/mL of the antioxidants derived from the oily extract from Lippia origanoides, respectively. On D7 of culture, the embryos in the blastocyst stage were fixed and prepared for electron transmission microscopy. These were evaluated for the proportion of cytoplasm-to-nucleus, cytoplasm-to-mitochondria, cytoplasm-to-vacuoles, cytoplasm-to-autophagic vacuoles and cytoplasm-to-lipid droplets. Blastocysts cultured in media containing oily extract of Lippia origanoides presented morphological characteristics such as high cell:mitochondria ratio and low cell:vacuoles and cell:autophagic vacuole ratio, possibly been morphological indicators of embryonic quality. Inner cell mass (ICM) from blastocysts cultured in media without any antioxidants had the highest cell:vacuole ratio. Similar results were found in the trophectoderm (TE) cells of blastocysts from treatment 2. Embryo culture media supplemented with antioxidants derived from Lippia origanoides oil produced embryos with a higher cytoplasmic proportion of organelles, such as mitochondria. Also, treatments without any antioxidants or with the addition of cysteamine presented cytoplasmic vacuolization, a characteristic related to production of poor-quality embryos.(AU)
Este estudo teve como objetivo avaliar a morfometria ultraestrutural de embriões bovinos produzidos in vitro e cultivados em diferentes concentrações de antioxidantes. Após a maturação e a fertilização in vitro, os possíveis zigotos foram divididos em cinco tratamentos: T1) sem adição de antioxidantes (controle negativo); T2) adição de 50µM/mL de cisteamina; e T3, T4 e T5) adição de 2,5µg/mL, 5,0µg/mL ou 10,0µg/mL dos antioxidantes derivados do extrato oleoso de Lippia origanoides, respectivamente. No D7 de cultivo, os embriões em estágio de blastocisto foram fixados e preparados para microscopia eletrônica de transmissão. Estes foram avaliados para a proporção entre citoplasma e núcleo, citoplasma e mitocôndria, citoplasma e vacúolos, citoplasma e vacúolos autofágicos e citoplasma e gotículas lipídicas. Blastocistos cultivados em meio contendo extrato oleoso de Lippia origanoides apresentaram características morfológicas como alta relação célula:mitocôndria e baixa relação célula:vacúolos e célula:vacúolo autofágico, possíveis indicadores morfológicos de qualidade embrionária. A massa celular interna (MCI) de blastocistos cultivados em meio sem quaisquer antioxidantes teve a maior razão célula:vacúolo. Resultados semelhantes foram encontrados nas células do trofectoderma (TE) de blastocistos do tratamento 2. Portanto, o meio de cultivo embrionário suplementado com antioxidantes derivados do óleo de Lippia origanoides produziu embriões com maior proporção citoplasmática de organelas, como mitocôndrias. Além disso, tratamentos sem antioxidantes ou com adição de cisteamina apresentaram vacuolização citoplasmática, característica relacionada à produção de embriões de baixa qualidade.(AU)
Assuntos
Blastocisto , Cisteamina , Lippia , Embrião de Mamíferos/ultraestrutura , Técnicas In Vitro/veterinária , AntioxidantesResumo
Coenzyme Q-10 (CoQ-10) is a cofactor for mitochondrial electron transport chain and may be an alternative to improve sperm quality of cryopreserved equine semen. This work aimed to improve stallion semen quality after freezing by adding CoQ-10 to the cryopreservation protocol. Seven saddle stallions were utilized. Each animal was submitted to five semen collections and freezing procedures. For cryopreservation, each ejaculate was divided in three treatments: 1) Botucrio® diluent (control); 2) 50 μmol CoQ-10 added to Botucrio® diluent; 3) 1 mmol CoQ-10 added to Botucrio® diluent. Semen batches were analyzed for sperm motility characteristics (CASA), plasma and acrosomal membranes integrity and mitochondrial membrane potential (by fluorescence probes propidium iodide, Hoechst 33342, FITC-PSA and JC-1, respectively), alterations in cytoskeletal actin (phalloidin-FITC) and mitochondrial function (diaminobenzidine; DAB). The 1 mmol CoQ-10 treatment presented higher (P<0.05) amount (66.8%) of sperm cells with fully stained midpiece (indicating high mitochondrial activity) and higher (P<0.05) amount (81.6%) of cells without actin reorganization to the post-acrosomal region compared to control group (60.8% and 76.0%, respectively). It was concluded that the addition of 1 mmol CoQ-10 to the freezing diluent was more effective in preserving mitochondria functionality and cytoskeleton of sperm cells submitted to cryopreservation process.(AU)
Assuntos
Animais , Masculino , Cavalos/genética , Ubiquinona/administração & dosagem , Dinâmica Mitocondrial , Criopreservação , Espermatozoides/química , ActinasResumo
O desenvolvimento de estudos genéticos e de microdispositivos biológicos tem proporcionado a ampliação do conhecimento sobre os complexos eventos que envolvem a reprodução animal. O desafio ainda é imensurável, mas a criação e surgimentos de novas perspectivas para a pesquisa básica tem-se feito presente. Neste trabalho revisamos de maneira suscinta algumas abordagens recentes, utilizadas pela pesquisa básica, sobretudo com o objetivo de lançar luz sobre o desenvolvimento folicular e oocitário. Dessa forma, essa revisão pretende fornecer uma visão geral do uso das tecnologias ômicas e sistema de microfluídica como auxiliadores na compreensão da foliculogênese. Adicionalmente serão apresentadas particularidades inerentes à fisiologia da gametogênese, que incluem ação de microorganismos e mitocôndrias, além do importante papel da comunicação intercelular através das vesículas extracelulares.
The development of genetic studies and biological microdevices has expanded knowledge about the complex events involving animal reproduction. The challenge is still immeasurable, but the creation and emergence of new perspectives for basic research have been present. This paper briefly reviews some recent approaches used in basic research, mainly to shed light on follicular and oocyte development. Thus, this review intends to provide an overview of the use of omics technologies and microfluidics systems as aids in understanding folliculogenesis. Also, it will present particulars inherent in the physiology of gametogenesis, which include microorganisms and mitochondria, in addition to the important role of intercellular communication through extracellular vesicles.
Assuntos
Animais , Bioengenharia , Fenômenos Genéticos , Folículo Ovariano/crescimento & desenvolvimento , Microbiota , Técnicas Analíticas MicrofluídicasResumo
Background:Scolopendra polymorpha (S. polymorpha) is a predatory centipede whose venom contains a multiplicity of biochemical effectors that can cause muscle damage and cumulative cell destruction in its prey. Despite previous investigations of S. polymorpha and other centipede venoms, there is a lack of information on the morphological and biochemical patterns elicited by their myotoxic effects. To elucidate these processes, this paper presents evidence of skeletal muscle damage, and alterations in key biochemical mediators that appear only after exposure to centipede venom.Methods:Venom was collected and fractionated using RP-HPLC; mouse extensor digitorum longus (EDL) muscle was exposed to whole venom and venom fractions to evaluate myotoxicity by means of creatine kinase (CK) - a muscle damage marker - activity measurements and histochemical analysis.Results:CK activity was higher in EDL muscle exposed to venom than in unexposed muscle. This increase was observed after 15 min of venom incubation, and remained stable up to 45 min. Venom-exposed EDL muscle showed signs of muscle damage including necrosis, loss of fascicular structure as well as mitochondrial accumulations and ragged red fibers (RRF), suggesting an impairment in the normal mitochondrial arrangement. Nicotinamide adenine dinucleotide (NADH) and cytochrome oxidase (COX) tests also indicate that respiratory complexes might be affected.Conclusion:Our results suggest a different biochemical composition of S. polymorpha venom, based on the different effects of four venom fractions on the cells tested, according to statistical evidence. Fractions F6 and F7 caused the most important alterations.(AU)