Your browser doesn't support javascript.
loading
Antimicrobial activity and partial chemical structure of acylpolyamines isolated from the venom of the spider Acanthoscurria natalensis
Barth, Tania; Silva, Aline; Santos, Simone Setubal dos; Santos, Jane Lima; Andrade, Patrícia Diniz; Tsai, Jessica; Caldas, Eloísa Dutra; Castro, Mariana de Souza; Pires Júnior, Osmindo Rodrigues.
Afiliação
  • Barth, Tania; State University of Santa Cruz. Department of Biological Sciences. Laboratory of Animal Histology. Ilhéus. BR
  • Silva, Aline; State University of Santa Cruz. Department of Biological Sciences. Laboratory of Microbiology. Ilhéus. BR
  • Santos, Simone Setubal dos; State University of Santa Cruz. Department of Biological Sciences. Laboratory of Immunobiology. Ilhéus. BR
  • Santos, Jane Lima; State University of Santa Cruz. Department of Biological Sciences. Laboratory of Immunobiology. Ilhéus. BR
  • Andrade, Patrícia Diniz; University of Brasilia. School of Health Sciences. Department of Pharmacy. Laboratory of Toxicology. Brasilia. BR
  • Tsai, Jessica; University of Brasilia. Institute of Biological Sciences. Department of Physiological Sciences. Laboratory of Toxinology. Brasilia. BR
  • Caldas, Eloísa Dutra; University of Brasilia. School of Health Sciences. Department of Pharmacy. Laboratory of Toxicology. Brasilia. BR
  • Castro, Mariana de Souza; University of Brasilia. Institute of Biological Sciences. Department of Physiological Sciences. Laboratory of Toxinology. Brasilia. BR
  • Pires Júnior, Osmindo Rodrigues; University of Brasilia. Institute of Biological Sciences. Department of Physiological Sciences. Laboratory of Toxinology. Brasilia. BR
J. venom. anim. toxins incl. trop. dis ; 28: e20210017, 2022. graf
Article em En | LILACS, VETINDEX | ID: biblio-1365075
Biblioteca responsável: BR68.1
ABSTRACT

Background:

Acylpolyamines are one of the main non-peptide compounds present in spider venom and represent a promising alternative in the search for new molecules with antimicrobial action.

Methods:

The venom of Acanthoscurria natalensis spider was fractionated by reverse-phase liquid chromatography (RP-HPLC) and the antimicrobial activity of the fractions was tested using a liquid growth inhibition assay. The main antimicrobial fraction containing acylpolyamines (ApAn) was submitted to two additional chromatographic steps and analyzed by MALDI-TOF. Fractions of interest were accumulated for ultraviolet (UV) spectroscopy and ESI-MS/MS analysis and for minimum inhibitory concentration (MIC) and hemolytic activity determination.

Results:

Five acylpolyamines were isolated from the venom with molecular masses between 614 Da and 756 Da, being named ApAn728, ApAn614a, ApAn614b, ApAn742 and ApAn756. The analysis of UV absorption profile of each ApAn and the fragmentation pattern obtained by ESI-MS/MS suggested the presence of a tyrosyl unit as chromophore and a terminal polyamine chain consistent with structural units PA43 or PA53. ApAn presented MIC between 128 µM and 256 µM against Escherichia coli and Staphylococcus aureus, without causing hemolysis against mouse erythrocytes.

Conclusion:

The antimicrobial and non-hemolytic properties of the analyzed ApAn may be relevant for their application as possible therapeutic agents and the identification of an unconventional chromophore for spider acylpolyamines suggests an even greater chemical diversity.(AU)
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: LILACS / VETINDEX Idioma: En Revista: J. venom. anim. toxins incl. trop. dis Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: LILACS / VETINDEX Idioma: En Revista: J. venom. anim. toxins incl. trop. dis Ano de publicação: 2022 Tipo de documento: Article