Your browser doesn't support javascript.

Portal de Pesquisa da BVS Veterinária

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Exportar:

Email
Adicionar mais destinatários

Enviar resultado
| |

Potassium fertilization as salt stress attenuator in sour passion fruit / Adubação potássica como atenuante do estresse salino em maracujazeiro-azedo

Souza, Weslley Bruno Belo de; Lima, Geovani Soares de; Paiva, Francisco Jean da Silva; Soares, Lauriane Almeida dos Anjos; Fátima, Reynaldo Teodoro de; Silva, André Alisson Rodrigues da; Gheyi, Hans Raj; Fernandes, Pedro Dantas.
Ciênc. rural (Online); 53(9): e20210769, 2023. graf, tab
Artigo em Inglês | VETINDEX | ID: biblio-1418343

Resumo

Water scarcity associated with irregular rainfall in the semi-arid region of Northeastern Brazil stands out as a limiting factor for agricultural production. Thus, the use of waters with high concentration of salts is an alternative to expand irrigated agriculture in this region. In this context, this study evaluated the water status, intercellular electrolyte leakage, photosynthetic pigments, and gas exchange of 'BRS SC1' sour passion fruit as a function of irrigation with water of different levels of salinity and potassium doses. The experiment was carried out in pots adapted as drainage lysimeters under field conditions at the Experimental Farm of the Federal University of Campina Grande in São Domingos - PB, Brazil. The experimental design was randomized blocks, in a 5 × 4 factorial scheme, whose treatments were obtained by combining two factors: five levels of electrical conductivity of irrigation water - ECw (0.3, 1.1, 1.9, 2.7, and 3.5 dS m-1), associated with four potassium doses (60, 80, 100, and 120% of the recommendation), with three replicates. Water with electrical conductivity greater than 0.3 dS m-1 reduced the relative water content, chlorophyll a and chlorophyll b contents, CO2 assimilation rate, and instantaneous water use efficiency of 'BRS SC1' sour passion fruit plants. The estimated potassium dose of 85% of the recommendation (equivalent to 293 g per plant per year) mitigated the deleterious effects of salt stress on stomatal conductance, transpiration, internal CO2 concentration, and instantaneous carboxylation efficiency of passion fruit 'BRS SC1'.
Water scarcity associated with irregular rainfall in the semi-arid region of Northeastern Brazil stands out as a limiting factor for agricultural production. Thus, the use of waters with high concentration of salts is an alternative to expand irrigated agriculture in this region. In this context, this study evaluated the water status, intercellular electrolyte leakage, photosynthetic pigments, and gas exchange of 'BRS SC1' sour passion fruit as a function of irrigation with water of different levels of salinity and potassium doses. The experiment was carried out in pots adapted as drainage lysimeters under field conditions at the Experimental Farm of the Federal University of Campina Grande in São Domingos - PB, Brazil. The experimental design was randomized blocks, in a 5 × 4 factorial scheme, whose treatments were obtained by combining two factors: five levels of electrical conductivity of irrigation water - ECw (0.3, 1.1, 1.9, 2.7, and 3.5 dS m-1), associated with four potassium doses (60, 80, 100, and 120% of the recommendation), with three replicates. Water with electrical conductivity greater than 0.3 dS m-1 reduced the relative water content, chlorophyll a and chlorophyll b contents, CO2 assimilation rate, and instantaneous water use efficiency of 'BRS SC1' sour passion fruit plants. The estimated potassium dose of 85% of the recommendation (equivalent to 293 g per plant per year) mitigated the deleterious effects of salt stress on stomatal conductance, transpiration, internal CO2 concentration, and instantaneous carboxylation efficiency of passion fruit 'BRS SC1'.
Biblioteca responsável: BR68.1
Localização: BR68.1