Your browser doesn't support javascript.
loading
Applications of livestock monitoring devices and machine learning algorithms in animal production and reproduction: an overview
Curti, Paula de Freitas; Selli, Alana; Pinto, Diógenes Lodi; Merlos-Ruiz, Alexandre; Balieiro, Julio Cesar de Carvalho; Ventura, Ricardo Vieira.
Afiliação
  • Curti, Paula de Freitas; Universidade de São Paulo. Faculdade de Medicina Veterinária e Zootecnia. Departamento de Nutrição e Produção Animal. Pirassununga. BR
  • Selli, Alana; Universidade de São Paulo. Faculdade de Medicina Veterinária e Zootecnia. Departamento de Nutrição e Produção Animal. Pirassununga. BR
  • Pinto, Diógenes Lodi; Universidade de São Paulo. Faculdade de Medicina Veterinária e Zootecnia. Departamento de Nutrição e Produção Animal. Pirassununga. BR
  • Merlos-Ruiz, Alexandre; Universidade de São Paulo. Faculdade de Medicina Veterinária e Zootecnia. Departamento de Nutrição e Produção Animal. Pirassununga. BR
  • Balieiro, Julio Cesar de Carvalho; Universidade de São Paulo. Faculdade de Medicina Veterinária e Zootecnia. Departamento de Nutrição e Produção Animal. Pirassununga. BR
  • Ventura, Ricardo Vieira; Universidade de São Paulo. Faculdade de Medicina Veterinária e Zootecnia. Departamento de Nutrição e Produção Animal. Pirassununga. BR
Anim. Reprod. (Online) ; 20(2): e20230077, 2023. ilus
Article em En | VETINDEX | ID: biblio-1452297
Biblioteca responsável: BR68.1
ABSTRACT
Some sectors of animal production and reproduction have shown great technological advances due to the development of research areas such as Precision Livestock Farming (PLF). PLF is an innovative approach that allows animals to be monitored, through the adoption of cutting-edge technologies that continuously collect real-time data by combining the use of sensors with advanced algorithms to provide decision tools for farmers. Artificial Intelligence (AI) is a field that merges computer science and large datasets to create expert systems that are able to generate predictions and classifications similarly to human intelligence. In a simplified manner, Machine Learning (ML) is a branch of AI, and can be considered as a broader field that encompasses Deep Learning (DL, a Neural Network formed by at least three layers), generating a hierarchy of subsets formed by AI, ML and DL, respectively. Both ML and DL provide innovative methods for analyzing data, especially beneficial for large datasets commonly found in livestock-related activities. These approaches enable the extraction of valuable insights to address issues related to behavior, health, reproduction, production, and the environment, facilitating informed decision-making. In order to create the referred technologies, studies generally go through five steps involving data processing acquisition, transferring, storage, analysis and delivery of results. Although the data collection and analysis steps are usually thoroughly reported by the scientific community, a good execution of each step is essential to achieve good and credible results, which impacts the degree of acceptance of the proposed technologies in real life practical circumstances. In this context, the present work aims to describe an overview of the current implementations of ML/DL in livestock reproduction and production, as well to identify potential challenges and critical points in each of the five steps mentioned, which can affect results and application of AI techniques by farmers in practical situations.(AU)
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: VETINDEX Idioma: En Revista: Anim. Reprod. (Online) Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: VETINDEX Idioma: En Revista: Anim. Reprod. (Online) Ano de publicação: 2023 Tipo de documento: Article