Your browser doesn't support javascript.

Portal de Pesquisa da BVS Veterinária

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Exportar:

Email
Adicionar mais destinatários

Enviar resultado
| |

Oxygen consumption remains stable while ammonia excretion is reduced upon short time exposure to high salinity in Macrobrachium acanthurus (Caridae: Palaemonidae), a recent freshwater colonizer

Freire, Carolina A; Rios, Leonardo de P; Giareta, Eloísa P; Castellano, Giovanna C.
Zoologia (Curitiba); 34: 1-9, 2017. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-17354

Resumo

Palaemonid shrimps occur in the tropical and temperate regions of South America and the Indo-Pacific, in brackish/freshwater habitats, and marine coastal areas. They form a clade that recently (i.e., ~30 mya) invaded freshwater, and one included genus, Macrobrachium Bate, 1868, is especially successful in limnic habitats. Adult Macrobrachium acanthurus (Wiegmann, 1836) dwell in coastal freshwaters, have diadromous habit, and need brackish water to develop. Thus, they are widely recognized as euryhaline. Here we test how this species responds to a short-term exposure to increased salinity. We hypothesized that abrupt exposure to high salinity would result in reduced gill ventilation/perfusion and decreased oxygen consumption. Shrimps were subjected to control (0 psu) and experimental salinities (10, 20, 30 psu), for four and eight hours (n = 8 in each group). The water in the experimental containers was saturated with oxygen before the beginning of the experiment; aeration was interrupted before placing the shrimp in the experimental container. Dissolved oxygen (DO), ammonia concentration, and pH were measured from the aquaria water, at the start and end of each experiment. After exposure, the shrimps hemolymph was sampled for lactate and osmolality assays. Muscle tissue was sampled for hydration content (Muscle Water Content, MWC). Oxygen consumption was not reduced and hemolymph lactate did not increase with increased salinity. The pH of the water decreased with time, under all conditions. Ammonia excretion decreased with increased salinity. Hemolymph osmolality and MWC remained stable at 10 and 20 psu, but osmolality increased (~50%) and MWC decreased (~4%) at 30 psu. The expected reduction in oxygen consumption was not observed...(AU)
Biblioteca responsável: BR68.1
Localização: BR68.1