Your browser doesn't support javascript.
loading
Neuroprotective properties of RT10, a fraction isolated from Parawixia bistriata spider venom, against excitotoxicity injury in neuron-glia cultures
Primini, Eduardo Octaviano; Liberato, José Luiz; Fontana, Andreia Cristina Karklin; Santos, Wagner Ferreira dos.
Afiliação
  • Primini, Eduardo Octaviano; University of São Paulo. College of Philosophy, Sciences and Literature of Ribeirão Preto. Department of Biology. Neurobiology and Venoms Laboratory. Ribeirão Preto. Brasil
  • Liberato, José Luiz; University of São Paulo. College of Philosophy, Sciences and Literature of Ribeirão Preto. Department of Biology. Neurobiology and Venoms Laboratory. Ribeirão Preto. Brasil
  • Fontana, Andreia Cristina Karklin; Drexel University College of Medicine. Department of Pharmacology and Physiology. Philadelphia. United States of America
  • Santos, Wagner Ferreira dos; University of São Paulo. College of Philosophy, Sciences and Literature of Ribeirão Preto. Department of Biology. Neurobiology and Venoms Laboratory. Ribeirão Preto. Brasil
J. Venom. Anim. Toxins incl. Trop. Dis. ; 25: e148818, May 16, 2019. ilus, graf
Article em En | VETINDEX | ID: vti-19838
Biblioteca responsável: BR68.1
ABSTRACT

Background:

L-Glutamate (L-Glu), the major excitatory neurotransmitter in the mammalian Central Nervous System (CNS), is essential to cognitive functions. However, when L-Glu is accumulated in large concentrations at the synaptic cleft, it can induce excitotoxicity that results in secondary damage implicated in many neurological disorders. Current therapies for the treatment of neurological disorders are ineffective and have side effects associated with their use; therefore, there is a need to develop novel treatments. In this regard, previous studies have shown that neuroactive compounds obtained from the venom of the spider Parawixia bistriata have neuroprotective effects in vitro and in vivo. In this sense, this work aimed to evaluate potential neuroprotective effects of fraction RT10, obtained from this spider venom, on primary cultures of neuron and glial cells subjected to glutamate excitotoxicity insults.

Methods:

Primary cultures of neurons and glia were obtained from the cerebral tissue of 1-day-old postnatal Wistar rats. After 7 days in vitro (DIV), the cultures were incubated with fraction RT10 (0.002; 0.02; 0.2 and 2 µg/µL) or riluzole (100 µM) for 3-hours before application of 5 mM L-Glu. After 12 hours, the resazurin sodium salt (RSS) test was applied to measure metabolic activity and proliferation of living cells, whereas immunocytochemistry for MAP2 was performed to measure neuronal survival. In addition, the cells were immunolabeled with NeuN and GFAP in baseline conditions.

Results:

In the RSS tests, we observed that pre-incubation with RT10 before the excitotoxic insults from L-Glu resulted in neuroprotection, shown by a 10% reduction in the cell death level. RT10 was more effective than riluzole, which resulted in a cell-death reduction of 5%. Moreover, qualitative analysis of neuronal morphology (by MAP2 staining, expressed as fluorescence intensity (FI), an indirect measure of neuronal survival)...(AU)
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: VETINDEX Idioma: En Revista: J. Venom. Anim. Toxins incl. Trop. Dis. Ano de publicação: 2019 Tipo de documento: Article / Project document

Texto completo: 1 Base de dados: VETINDEX Idioma: En Revista: J. Venom. Anim. Toxins incl. Trop. Dis. Ano de publicação: 2019 Tipo de documento: Article / Project document