Your browser doesn't support javascript.

Portal de Pesquisa da BVS Veterinária

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Exportar:

Email
Adicionar mais destinatários

Enviar resultado
| |

The effects of biological aging on global DNA methylation, histone modification, and epigenetic modifiers in the mouse germinal vesicle stage oocyte(AU)

Marshall, Kira Lynn; Wang, Juanbin; Ji, Tieming; Rivera, Rocío Melissa.
Anim. Reprod.; 15(4): 1253-1267, out.-dez. 2018. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-20079

Resumo

A cultural trend in developed countries is favoring a delay in maternal age at first childbirth. In mammals fertility and chronological age show an inverse correlation. Oocyte quality is a contributing factor to this multifactorial phenomenon that may be influenced by age-related changes in the oocyte epigenome. Based on previous reports, we hypothesized that advanced maternal age would lead to alterations in the oocytes epigenome. We tested our hypothesis by determining protein levels of various epigenetic modifications and modifiers in fully-grown (≥70 µm), germinal vesicle (GV) stage oocytes of young (10-13 weeks) and aged (69-70 weeks) mice. Our results demonstrate a significant increase in protein amounts of the maintenance DNA methyltransferase DNMT1 (P = 0.003) and a trend toward increased global DNA methylation (P = 0.09) with advanced age. MeCP2, a methyl DNA binding domain protein, recognizes methylated DNA and induces chromatin compaction and silencing. We hypothesized that chromatin associated MeCP2 would be increased similarly to DNA methylation in oocytes of aged female mice. However, we detected a significant decrease (P = 0.0013) in protein abundance of MeCP2 between GV stage oocytes from young and aged females. Histone posttranslational modifications can also alter chromatin conformation. Di-methylation of H3K9 (H3K9me2) is associated with permissive heterochromatin while acetylation of H4K5 (H4K5ac) is associated with euchromatin. Our results indicate a trend toward decreasing H3K9me2 (P = 0.077) with advanced female age and no significant differences in levels of H4K5ac. These data demonstrate that physiologic aging affects the mouse oocyte epigenome and provide a better understanding of the mechanisms underlying the decrease in oocyte quality and reproductive potential of aged females.(AU)
Biblioteca responsável: BR68.1
Localização: BR68.1