Statistical modeling for analyzing grain yield of durum wheat under rainfed conditions in Azad Jammu Kashmir, Pakistan / Modelagem estatística para analisar o rendimento de grãos de trigo durum sob condições de chuva em Azad Jammu Kashmir, Paquistão
Braz. j. biol
; 82: 1-11, 2022. graf, tab
Article
em En
| LILACS, VETINDEX
| ID: biblio-1468560
Biblioteca responsável:
BR68.1
Localização: BR68.1
ABSTRACT
One of the most important traits that plant breeders aim to improve is grain yield which is a highly quantitative trait controlled by various agro-morphological traits. Twelve morphological traits such as Germination Percentage, Days to Spike Emergence, Plant Height, Spike Length, Awn Length, Tillers/Plant, Leaf Angle, Seeds/Spike, Plant Thickness, 1000-Grain Weight, Harvest Index and Days to Maturity have been considered as independent factors. Correlation ,regression, and principal component analysis (PCA) are used to identify the different durum wheat traits, which significantly contribute to the yield. The necessary assumptions required for applying regression modeling have been tested and all the assumptions are satisfied by the observed data. The outliers are detected in the observations of fixed traits and Grain Yield. Some observations are detected as outliers but the outlying observations did not show any influence on the regression fit. For selecting a parsimonious regression model for durum wheat, best subset regression, and stepwise regression techniques have been applied. The best subset regression analysis revealed that Germination Percentage, Tillers/Plant, and Seeds/Spike have a marked increasing effect whereas Plant thickness has a negative effect on durum wheat yield. While stepwise regression analysis identified that the traits, Germination Percentage, Tillers/Plant, and Seeds/Spike significantly contribute to increasing the durum wheat yield. The simple correlation coefficient specified the significant positive correlation of Grain Yield with Germination Percentage, Number of Tillers/Plant, Seeds/Spike, and Harvest Index. These results of correlation analysis directed the importance of morphological characters and their significant positive impact on Grain Yield. [...].
RESUMO
Uma das características mais importantes que os produtores de plantas visam melhorar é o rendimento de grãos, que é uma particularidade altamente quantitativa e controlada por várias características agromorfológicas. Foram considerados 12 traços morfológicos como fatores independentes, como Porcentagem de Germinação, Dias para Emergência da Espiga, Altura da Planta, Comprimento da Espiga, Comprimento da Aresta, Perfilhos /Planta, Ângulo da Folha, Sementes /Espiga, Espessura da Planta, Peso de 1000 Grãos, Índice de Colheita e Dias até a Maturidade. A correlação, regressão e análise de componentes principais (em inglês Principal Component Analysis (PCA)) são usadas para identificar as diferentes características do trigo duro, que contribuem significativamente para o rendimento. As suposições necessárias exigidas para a aplicação da modelagem de regressão foram testadas e todas as suposições são adequadas de acordo com os dados observados. Os outliers são detectados nas observações de características fixas e rendimento de grãos. Algumas observações são detectadas como outliers, mas as observações outliers não mostraram qualquer influência no ajuste da regressão. Para selecionar um modelo de regressão parcimonioso para o trigo duro, foram aplicadas tanto a melhor regressão de subconjunto quanto as técnicas de regressão stepwise. A melhor análise de regressão de subconjunto revelou que a porcentagem de germinação, perfilhos /planta e sementes /espiga tem um efeito de aumento acentuado, enquanto a espessura da planta tem um efeito negativo sobre o rendimento do trigo duro. Enquanto a análise de regressão passo a passo identificou que as características, porcentagem de germinação, perfilhos/planta e sementes /espiga contribuem significativamente para aumentar a produtividade do trigo duro. O coeficiente de correlação simples especificou a correlação positiva significativa do [...].
Palavras-chave
Texto completo:
1
Base de dados:
VETINDEX
/
LILACS
Idioma:
En
Revista:
Braz. J. Biol.
/
Braz. j. biol
Ano de publicação:
2022
Tipo de documento:
Article