Your browser doesn't support javascript.

Portal de Pesquisa da BVS Veterinária

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Exportar:

Email
Adicionar mais destinatários

Enviar resultado
| |

AVALIAÇÃO DA CICLAGEM DE NUTRIENTES EM SISTEMAS INTEGRADOS DE PRODUÇÃO AGROPECUÁRIA NO SUBTRÓPICO BRASILEIRO

FLAVIA DE OLIVEIRA.
Tese em Português | VETTESES | ID: vtt-215493

Resumo

Sistemas integrados de produção agropecuária (SIPA) integram em um mesmo espaço vários componentes, tais como lavoura, pastagens, animais, bem como árvores de forma sinérgica. Quando bem manejado, pode trazer a sustentabilidade para a propriedade. Um dos desafios em tais sistemas é o entendimento da dinâmica de nutrientes e o possível reaproveitamento destes pela cultura sucessora. O objetivo deste trabalho foi avaliar o aporte de liteira e dos macronutrientes, como nitrogênio (N), fósforo (P), potássio (K) e enxofre (S) em SIPA, com ausência e presença de árvores (~159 árvores ha-1), submetidos a doses de nitrogênio (90 e 180 kg N ha-1, N90 e N180, respectivamente) na fase pastagem. O experimento foi conduzido no Instituto Agronômico do Paraná, município de Ponta Grossa, Paraná. O delineamento experimental utilizado foi o de blocos ao acaso com quatro tratamentos e três repetições. De modo a melhor representar o ambiente arborizado, foi feita a subdivisão da unidade experimental em três posições entre linha das árvores. O experimento iniciou em 2006, com o plantio de árvores em arranjo de 14 x 3m. Durante o inverno cultiva-se aveia preta e azevém, pastejada por bovinos de corte, e, durante o verão, soja/milho. O presente experimento iniciou na fase pastagem de 2013, a qual antecedeu a cultura do milho (safra 2013/2014), estendendo-se até a fase pastagem no inverno de 2014. Durante a lavoura de milho e pastagem (2014), foram inseridos litter bags com os resíduos da cultura anterior, no momento das suas respectivas semeaduras. Aos 8, 15, 30, 60, 90, 120, 153 e 165 dias após a semeadura do milho e da pastagem foram coletadas as amostras dos litter bags, pesadas suas respectivas massas secas (MS) e quantificados os macronutrientes. Também foram calculadas as taxas de decomposição do resíduo e da liberação de macronutrientes. Em geral, a quantidade inicial de resíduo, tanto da pastagem como do milho, foi inferior nos tratamentos com árvores (-28%). Diferenças significativas foram observadas entre os tratamentos nos teores iniciais em N (variando de 12 no ILPF N90 até 14 g/kg no ILPF N180) do resíduo da pastagem e para os teores iniciais de K (variando entre 6,5 no ILP N90 até 12 g/kg no ILPF N90) e S (variando de 0,68 ILPF N90 até 0,91g/kg ILP N90) no resíduo do milho. As posições entre as linhas das árvores afetaram apenas os teores iniciais de N e S dos resíduos. Em relação a dinâmica de decomposição dos resíduos e liberação de macronutrientes, diferenças significativas entre os tratamentos foram observadas somente para decomposição do resíduo da pastagem e liberação de P do mesmo. A fração ativa da MS da pastagem variou entre 44 (ILPF N90) a 59 % (ILP N180). O tempo de meia vida (T1/2) variou entre 11 (ILP N90) e 54 (ILPF N180) dias para MS e entre 6 (ILP N90) e 21 (ILPF N90) dias para o P. O T1/2 do N foi de 19 dias, enquanto que para K e S foi de 13 dias. Em relação ao resíduo do milho, o T1/2 variou entre 5 (no caso de N) e 24 (no caso de P) dias. No mínimo 44% do resíduo proveniente da pastagem foi decomposto ao longo dos 165 dias de exposição à campo dos litter bags. Em relação ao resíduo do milho, 30% foi decomposto ao longo de 90 dias, independente do tratamento. Máximas liberações (37; 2,8; 62 e 2,5 kg/há de N, P, K e S, respectivamente) de nutrientes foram observadas no ILP N180 para o resíduo da pastagem, principalmente em função da maior quantidade de resíduo inicial neste tratamento. Para o resíduo do milho, máximas liberações ocorreram no ILP N90 para N (48 kg/ha), P (17,4 kg/ha) e S (4,8 kg/ha), em função da maior quantidade de resíduo inicial neste tratamento, e no ILPF N90 para K (82 kg/ha), em função do maior teor inicial em K. Portanto, tais quantidades cicladas devem ser consideradas no manejo da fertilização. Desbastes precisam ser intensificados no ILPF para reduzir o nível de sombreamento e evitar grandes reduções nas quantidades de resíduo, para otimizar os benefícios da ciclagem de nutrientes.
Integrated Crop Livestock Systems (ICLS) comprehend in a same space several components, such as grain and forages crops, animals and tree component of synergistic form. When well managed, it can bring sustainability to the property. One of the challenges in such systems is the understanding of the nutrient dynamics and the possible reutilization of these by the successor culture. The objective of this study was to evaluate the contribution of litter and macronutrients, such as nitrogen (N), phosphorus (P), potassium (K) and sulfur (S) in ICLS, with absence and presence of trees ), submitted to nitrogen doses (90 and 180 kg N ha-1, N90 and N180, respectively) in the pasture phase. The experiment was carried out at the Agronomic Institute of Paraná, municipality of Ponta Grossa, Paraná. The experimental design was a randomized block design with four treatments (ILP N90, ILP N180, ILPF N90 and ILPF N180, being ILP, integration of livestock and ILPF, integration of livestock and forest) and three replications. In order to better represents the wooded environment, the experimental unit was subdivided into three positions (1m, 3.5m and 7m distance from the tree line). The experiment began in 2006 with the planting of trees in arrangement of 14 x 3m. During winter, black oats and ryegrass are grazed by beef cattle and, in the summer, soybean/corn. The present experiment started in the pasture phase of 2013, which preceded the corn crop (crop 2013/2014), extending until the pasture stage in the winter of 2014. During maize and pasture (2014), litter bags were inserted with the residues from the previous crop, at the time of their respective sowing. The samples were collected at 8, 15, 30, 60, 90, 120, 153, and 165 days after sowing of maize and pasture. The samples were performed to dry masses (DM) measure and macronutrients determination. The rates of decomposition of the residue and the release of macronutrients were also calculated. Overall, the initial amount of residue from both pasture and maize was lower in tree treatments (-28%). Differences were observed between treatments at initial N contents (ranging from 12 in ILPF N90 to 14 g / kg in ILPF N180) of the pasture residue and for the initial K contents (ranging from 6.5 in ILP N90 to 12 g / kg in ILPF N90) and S (ranging from 0.68 ILPF N90 to 0.91 g / kg ILP N90) in the corn residue. The positions between the tree lines affected only the initial N and S contents of the residues. In relation to the dynamics of the decomposition of the residues and the release of macronutrients, significant differences between the treatments were observed only for the decomposition of the pasture residue and the release of P from the same. The active fraction of DM from pasture ranged from 44 (ILPF N90) to 59% (ILP N180). The half-life time (T1/2) varied between 11 (ILP N90) and 54 (ILPF N180) days for MS and between 6 (ILP N90) and 21 (ILPF N90) days for P. O T1/2 of N was 19 days, whereas for K and S it was 13 days. In relation to maize residue, T1/2 ranged from 5 (in the case of N) to 24 (in the case of P) days. At least 44% of the pasture residue was decomposed during the 165 days of exposure to litter bags. Regarding corn residue, 30% was decomposed over 90 days, regardless of the treatment. The maximum nutrient release (37, 2.8, 62 and 2.5 kg/ha of N, P, K and S respectively) was observed in the ILP N180 for the pasture residue, mainly due to the higher amount of initial residue in this treatment. For the maize residue, maximum releases occurred in ILP N90 for N (48 kg/ha), P (17.4 kg/ha) and S (4.8 kg / ha), due to the higher amount of initial residue in this treatment, and in ILPF N90 for K (82 kg / ha), as a function of the higher starting content in K. Therefore, such cycled quantities should be considered in the management of fertilization. Slabs need to be intensified in the ILPF to reduce the level of shading and avoid large reductions in residue amounts to optimize the benefits of nutrient cycling.
Biblioteca responsável: BR68.1