Your browser doesn't support javascript.

Portal de Pesquisa da BVS Veterinária

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Exportar:

Email
Adicionar mais destinatários

Enviar resultado
| |

SISTEMAS SILVIPASTORIS COM LEGUMINOSAS ARBÓREAS E Brachiaria decumbens STAPF: BIOMASSA ARBÓREA, DECOMPOSIÇÃO DE FOLHAS E FERTILIDADE DO SOLO

ANA MARIA HERRERA ANGULO.
Tese em Português | VETTESES | ID: vtt-219595

Resumo

Sistemas silvipastoris integrando leguminosas arbóreas podem beneficiar a sustentabilidade do ecossistema, promovendo serviços ambientais. Neste sentido, objetivou-se avaliar o potencial produtivo e composição química de leguminosas arbóreas, comparar três metodologias de decomposição de folhas senescentes de leguminosas, analisar a decomposição no solo de folhas senescentes de Gliricidia sepium (Jacq.) Steud. (Gliricídia), Mimosa caesalpiniifolia Benth. (Sabiá) e Braquiaria decumbens Stapf. (Braquiária), e avaliar a fertilidade do solo em sistemas silvipastoris. As parcelas experimentais consistiram dos consórcios Braquiária + Gliricídia, Braquiária + Sabiá e Braquiária em monocultivo. O delineamento experimental foi casualizado em blocos, com três repetições, em parcelas sob lotação contínua e taxa de lotação variável. Quatro amostragens foram realizadas entre outubro/16abril/18 (intervalos de 6 meses), para avaliação de variáveis dendrométricas, biomassa total (BT) das leguminosas [folhas até 1,5 m de altura (F15) e totais (FT), e ramos finos (RF, <12,9 cm de circunferência), intermediários (RI, 1320 cm) e grossos (RG, >20 cm)]; análise química de folhas de leguminosas e Braquiária [matéria seca (MS), matéria orgânica (MO), nitrogênio (N), fibra em detergente ácido (FDA), lignina e nitrogênio insolúvel em detergente ácido (NIDA)], e nas leguminosas a relação carbono:nitrogênio (C:N), abundância natural do 15N (15N), 13C (13C) e nitrogênio derivado da atmosfera (Ndda). Na comparação dos processos de decomposição de folhas, três incubações foram realizadas: no solo (0, 4, 8, 16, 32, 64, 128 e 256 dias) com sacos de náilon e tecido não tecido (TNT); e no rúmen (0, 6, 12, 24, 48, 96 e 144 horas) com sacos de TNT. Foram desenvolvidos modelos de estimação de parâmetros para posterior análises considerando a porcentagem do tempo total de incubação. No solo (sacos de náilon) foram comparados os processos de decomposição das leguminosas e Braquiária. Foram determinadas, no solo, as propriedades físicas, químicas [pH, fósforo (P), potássio (K+), cálcio (Ca+2), magnésio (Mg+2), sódio (Na+), alumínio trocável (Al+3) e acidez potencial (H++Al+3), estimando a soma de bases trocáveis (SB), capacidade de troca de cátions (CTC) efetiva e potencial, saturação por bases (V) e saturação por Al+3 (m)], e biológicas [fração leve da matéria orgânica (FLMO), respiração basal (RBS) e abundância natural (13C) do CO2 respirado]. Os dados foram analisados utilizando o SAS University. As variáveis diâmetro da base (6,0 e 7,6 cm), comprimento do fuste (5,5 e 7,5 cm), altura de Lorey (5,9 e 7,2 cm), volume da árvore (0,2 e 0,3 m3), RI (7,5 e 13,9 Mg MS·ha-1), FT (1,8 e 3,0 Mg MS·ha-1), MS (252 e 427 g·kg MN-1), lignina (145 e 233 g·kg MS-1) e NIDA (168 e 272 g·kg N-1) sofreram efeito da espécie com médias superiores para Sabiá (P<0,05). A Gliricídia apresentou maior PB (250 e 187 g·kg MS-1), 13C (-34 e -35) e Ndda (65 e 47%). As taxas de decomposição (k) do N da Sabiá e lignina, C:N e lignina:N da Gliricídia foram superiores (P<0,05) no solo, independente do tecido utilizado. Na avaliação do processo de decomposição no solo, a k foi superior (P<0,05) para Braquiária na MS, C e C:N, Gliricídia e Braquiária na matéria orgânica (MO) e Gliricídia no N. No solo, o pH (5,3; 5,2; 5,1), P (11,3; 7,2; 3,6 mg·dm-3), Mg+2 (2,6; 1,1; 1,5 cmolc·dm-3), K+ (0,23; 0,17; 0,12 cmolc·dm-3), SB (5,3; 4,6; 4,6 cmolc·dm-3) e CTCefetiva (5,8; 5,1; 5,0 cmolc·dm-3) sofreram redução (P<0,05), enquanto H ++Al+3 (4,97; 9,6 e 9,8 cmolc·dm-3) sofreu elevação (P<0,05), respectivamente aos anos 2013, 2017 e 2018. A RBS sofreu redução (0,21 e 0,14 mg CO2·kg solo-1·h-1) em relação à profundidade 0-20 e 20-40 cm, respectivamente. A Sabiá demonstrou continuidade no crescimento e potencial para incorporar nutriente sao solo. A Gliricídia disponibiliza material forrageiro e tem maior potencial de FBN. A dinâmica da decomposição de folhas senescentes de Gliricídia e Sabiá no solo pode ser avaliada por meio de sacos de náilon ou TNT. A Gliricídia possui maior taxa de decomposição de folhas, com potencial de rápida liberação de nutrientes ao solo; enquanto na Sabiá evidencia liberação mais lenta de nutrientes ao solo, porém, com potencial de formar uma MO mais estável. A taxa de decomposição da Braquiária é limitada pelo baixo teor de N das folhas, alta relação C:N e imobilização de N durante o processo. Sistemas silvipastoris em consórcio com Braquiária, sem adubação de manutenção, mantêm uniformidade nas propriedades físicas do solo, embora ocorra redução na fertilidade. Ambos os sistemas contribuem com o sequestro de C.
Forestry systems integrating tree legumes can benefit the sustainability of the ecosystem, promoting environmental services. In this sense, the objectives were evaluate the productive and chemical potential of tree legumes, compare three methodologies for decomposing senescent legume leaves, analyze the decomposition in the soil of senescent leaves of Gliricidia sepium (Jacq.) Steud. (Gliricidia), Mimosa caesalpiniifolia Benth. (Sabiá) and Braquiaria decumbens Stapf. (Signalgrass), and evaluate soil fertility in silvopastoral systems. The experimental plots consisted of the consortia Signalgrass + Gliricidia, Signalgrass + Sabiá and Signalgrass in monoculture. The experimental design was randomized in blocks, with three replications, in plots maintained under continuous stocking and variable stocking rate. Four samplings were carried out between October/16 April/18 (6-month intervals), to evaluate dendrometric variables, total biomass (BT) of legumes [leaves up to 1.5 m high (L15) and total (LT), and thin branches (Tnb, <12.9 cm in circumference), intermediate (Ib, 1320 cm) and thick (Tcb, >20 cm)]; chemistry of legume and Signalgrass leaves [dry matter (DM), organic matter (OM), nitrogen (N), acid detergent fiber (ADF), lignin and nitrogen insoluble in acid detergent (ADIN)] and in legumes, carbon:nitrogen ratio (C:N), natural abundance of 15N ( 15N), 13C ( 13C) and nitrogen derived from the atmosphere (Ndfa). In the comparison of leaf decomposition processes, three incubations were performed, being in the soil (0, 4, 8, 16, 32, 64, 128 and 256 days) with nylon and non-woven bags (NWB) and in the rumen (0, 6, 12, 24, 48, 96 and 144 hours) with NWB Parameter estimation models were developed for further analysis considering the incubation total time percentage. In the soil (nylon bags), the decomposition processes of legumes and Signalgrass were compared. In the soil, the physical and chemical properties [pH, phosphorus (P), potassium (K+ ), calcium (Ca+2), magnesium (Mg+2), sodium (Na+ ), exchangeable aluminum (Al+3) and potential acidity (H++Al+3), estimating the exchangeable bases sum (EBS), effective and potential cation exchange capacity (CEC), base saturation (V) and Al+3 saturation (m)], and biological [organic matter light fraction (MOLF), basal respiration (SBR) and natural abundance ( 13C) of the breathed CO2]. Soil chemical analyzes in 2013 were also considered. Data were analyzed using SAS University. The variables base diameter (6.0 and 7.6 cm), stem length (5.5 and 7.5 cm), Lorey height (5.9 and 7.2 cm), tree volume (0, 2 and 0.3 m3), Ib (7.5 and 13.9 Mg DM·ha-1), TL (1.8 and 3.0 Mg MS·ha-1), DM (252 and 427 g·kg-1 as a fed), lignin (145 and 233 g·kg DM-1), ADIN (168 and 272 g·kg N-1) suffered species effect with higher averages in Sabiá (P<0.05). While, Gliricidia was superior in CP (250 and 187 g·kg DM-1), 13C (-34 and -35 ) and Ndfa (65 and 47%). Decomposition rate (k) of N from Sabiá and lignin, C:N and lignin:N from Gliricídia were higher (P<0.05) in the soil, regardless of textile used. In assessing the decomposition process in the soil, k was superior (P<0.05) for Signalgrass in DN, C and C:N ratio, for Gliricidia and Signalgrass in organic matter (OM) and for Gliricidia in N. In the soil, pH ( 5.3; 5.2; 5.1), P (11.3; 7.2; 3.6 mg·dm-3), Mg+2 (2.6; 1.1; 1.5 cmolc·dm-3), K+ (0.23; 0.17; 0.12 cmolc·dm3), EBS (5.3; 4.6; 4.6 cmolc·dm-3) and CECeffective (5.8; 5.1; 5.0 cmolc·dm-3) suffered a reduction (P<0.05), while H++Al+3 (4.97; 9.6; 9.8 cmolc·dm-3) suffered elevation (P<0.05), respectively for the years 2013, 2017 and 2018. Soil basal respiration suffered reduction (0.210.14 mg CO2·kg soil-1·h-1) in relation to the depth 0-20 and 20-40 cm, respectively. Sabiá demonstrated continued growth and potential to incorporate nutrients into the soil. Gliricídia provides forage material and has greater potential for NBF. Dynamics of senescent leaves decay of Gliricídia and Sabiá in the soil can be evaluated by means of nylon or TNT bags. Gliricidia has a higher rate of leaf decomposition, with the potential for rapid release of nutrients to the soil; while Sabiá shows slower release of nutrients, however, with the potential to form a more stable OM. Decomposition rate of Signalgrass is limited by the low N content of leaves, providing a high C:N ratio and immobilization of N during the process. Silviculture systems intercropped with Signalgrass, without maintenance fertilization, maintain uniformity in the physical properties of the soil, although there is a reduction in fertility. Both systems contribute to the sequestration of C.
Biblioteca responsável: BR68.1