Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571072

RESUMO

An investigation into the inspection capabilities of in-field advanced ultrasound detection for use on ultra-thick (20 to 100 mm) glass fibre-reinforced polyester composites is presented. Plates were manufactured using custom moulding techniques, such that delamination flaws were created at calibrated depths. The full matrix capture technique with an on-board total focussing method was used to detect flaws scanned by a 0.5 MHz linear array probe. Flaw through-thickness dimensions were altered to assess the threshold for crack face separation at which delaminations could be identified. Furthermore, part thickness and in-plane flaw dimensions were varied to identify the inspection capability limitations of advanced ultrasonics for thick composites. The results presented in this study demonstrate an inverse relationship between the ability to find delaminations and plate thicknesses, with inspections successful at depths up to 74 mm. When the delamination thickness exhibited surface-to-surface contact, the inspection capability was reduced to 35 mm. There was an exponential decay relationship between the accuracy of the flaw depth measurement and plate thickness, likely due to the necessity of low probe frequencies. The effective inspection depth was determined to be in the range of 1 to 20 times the wavelength. It is speculated that the accuracy of measurements could be improved using probes with novel coupling solutions, and detectors with optimised signal processing/filtration algorithms.

2.
Materials (Basel) ; 14(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919395

RESUMO

Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination.

3.
Polymers (Basel) ; 13(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34883607

RESUMO

In this study, two types of single polymer films have been inserted in a composite laminate to examine their toughening effects on mechanical properties. The first is a thermoplastic polyurethane (PU) film, and the second is an adhesive epoxy film featuring a polyester net. The laminates were manufactured either using a co-curing (CC) process or a secondary bonding (SB) process used for the epoxy film. Mode I and mode II interlaminar fracture toughness were measured for laminates manufactured by both processes and compared with the corresponding reference laminate toughness. A significant increase in both mode I and mode II toughness resulted when introducing a single PU film, approximately 290% and 50%, respectively. Similarly, the epoxy film improved the interlaminar fracture properties; the CC process produced an increase of 175% for mode II toughness, while the SB adhesive film showed an increase of 75% for mode II toughness.

4.
J Biomater Appl ; 29(4): 502-13, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24825760

RESUMO

An experimental and computational investigation of the self-tapping ability of carbon fibre reinforced polyetheretherketone (CFR-PEEK) has been conducted. Six CFR-PEEK suture anchor designs were investigated using PEEK-OPTIMA® Reinforced, a medical grade of CFR-PEEK. Experimental tests were conducted to investigate the maximum axial force and torque required for self-taping insertion of each anchor design. Additional experimental tests were conducted for some anchor designs using pilot holes. Computational simulations were conducted to determine the maximum stress in each anchor design at various stages of insertion. Simulations also were performed to investigate the effect of wall thickness in the anchor head. The maximum axial force required to insert a self-tapping CFR-PEEK suture anchor did not exceed 150 N for any anchor design. The maximum torque required to insert a self-tapping CFR-PEEK suture anchor did not exceed 0.8 Nm. Computational simulations reveal significant stress concentrations in the region of the anchor tip, demonstrating that a re-design of the tip geometry should be performed to avoid fracture during self-tapping, as observed in the experimental component of this study. This study demonstrates the ability of PEEK-OPTIMA Reinforced suture anchors to self-tap polyurethane foam bone analogue. This provides motivation to further investigate the self-tapping ability of CFR-PEEK suture anchors in animal/cadaveric bone. An optimised design for CFR-PEEK suture anchors offers the advantages of radiolucency, and mechanical properties similar to bone with the ability to self-tap. This may have positive implications for reducing surgery times and the associated costs with the procedure.


Assuntos
Carbono , Cetonas , Polietilenoglicóis , Âncoras de Sutura , Animais , Benzofenonas , Materiais Biocompatíveis , Fenômenos Biomecânicos , Fibra de Carbono , Força Compressiva , Simulação por Computador , Humanos , Teste de Materiais/instrumentação , Teste de Materiais/métodos , Polímeros , Desenho de Prótese , Manguito Rotador/cirurgia , Lesões do Manguito Rotador , Torque , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA