Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 52(5): 816-824, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35312186

RESUMO

The emergence of SARS-CoV-2 Omicron variant (B.1.1.529) with major spike protein mutations has raised concern over potential neutralization escape and breakthrough infections among vaccinated and previously SARS-CoV-2-infected subjects. We measured cross-protective antibodies against variants in health care workers (HCW, n = 20) and nursing home residents (n = 9) from samples collected at 1-2 months, following the booster (3rd) dose. We also assessed the antibody responses in subjects infected before the Omicron era (n = 38) with subsequent administration of a single mRNA vaccine dose. Following booster vaccination, HCWs had high IgG antibody concentrations to the spike protein and neutralizing antibodies (NAb) were detectable against all variants. IgG concentrations among the elderly remained lower, and some lacked NAbs against the Beta and Omicron variants. NAb titers were significantly reduced against Delta, Beta, and Omicron compared to WT virus regardless of age. Vaccination induced high IgG concentrations and variable titers of cross-reactive NAbs in previously infected subjects, whereas NAb titers against Omicron were barely detectable 1 month postinfection. High IgG concentrations with cross-protective neutralizing activity were detected after three Coronavirus Disease 2019 (COVID-19) vaccine doses in HCWs. However, lower NAb titers seen in the frail elderly suggest inadequate protection against Omicron breakthrough infections, yet protection against severe COVID-19 is expected.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Pessoal de Saúde , Humanos , Imunoglobulina G , RNA Mensageiro , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
2.
Euro Surveill ; 28(31)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535475

RESUMO

Since mid-July 2023, an outbreak caused by highly pathogenic avian influenza A(H5N1) virus clade 2.3.4.4b genotype BB is ongoing among farmed animals in South and Central Ostrobothnia, Finland. Infections in foxes, American minks and raccoon dogs have been confirmed on 20 farms. Genetic analysis suggests introductions from wild birds scavenging for food in farm areas. Investigations point to direct transmission between animals. While no human infections have been detected, control measures are being implemented to limit spread and human exposure.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Fazendas , Finlândia/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Vison , Filogenia
3.
Emerg Infect Dis ; 28(6): 1286-1288, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35608951

RESUMO

We report an experimental infection of American mink with SARS-CoV-2 Omicron variant and show that mink remain positive for viral RNA for days, experience clinical signs and histopathologic changes, and transmit the virus to uninfected recipients. Preparedness is crucial to avoid spread among mink and spillover to human populations.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/veterinária , Humanos , Vison
4.
Eur J Immunol ; 51(12): 3202-3213, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34580856

RESUMO

Most subjects develop antibodies to SARS-CoV-2 following infection. In order to estimate the duration of immunity induced by SARS-CoV-2 it is important to understand for how long antibodies persist after infection in humans. Here, we assessed the persistence of serum antibodies following WT SARS-CoV-2 infection at 8 and 13 months after diagnosis in 367 individuals. The SARS-CoV-2 spike IgG (S-IgG) and nucleoprotein IgG (N-IgG) concentrations and the proportion of subjects with neutralizing antibodies (NAb) were assessed. Moreover, the NAb titers among a smaller subset of participants (n = 78) against a WT virus (B) and variants of concern (VOCs): Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) were determined. We found that NAb against the WT virus persisted in 89% and S-IgG in 97% of subjects for at least 13 months after infection. Only 36% had N-IgG by 13 months. The mean S-IgG concentrations declined from 8 to 13 months by less than one third; N-IgG concentrations declined by two-thirds. Subjects with severe infection had markedly higher IgG and NAb levels and are expected to remain seropositive for longer. Significantly lower NAb titers against the variants compared to the WT virus, especially after a mild disease, suggests reduced protection against VOCs.


Assuntos
Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , COVID-19/imunologia , Imunoglobulina G/metabolismo , SARS-CoV-2/fisiologia , Adolescente , Adulto , Idoso , COVID-19/epidemiologia , Estudos de Coortes , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Feminino , Finlândia/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Adulto Jovem
5.
J Infect Dis ; 224(2): 218-228, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33905505

RESUMO

BACKGROUND: Primary diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is based on detection of virus RNA in nasopharyngeal swab samples. In addition, analysis of humoral immunity against SARS-CoV-2 has an important role in viral diagnostics and seroprevalence estimates. METHODS: We developed and optimized an enzyme immunoassays (EIA) using SARS-CoV-2 nucleoprotein (N), S1 and receptor binding domain (RBD) of the viral spike protein, and N proteins from SARS, Middle East respiratory syndrome (MERS), and 4 low-pathogenic human CoVs. Neutralizing antibody activity was compared with SARS-CoV-2 IgG, IgA, and IgM EIA results. RESULTS: The sensitivity of EIA for detecting immune response in COVID-19 patients (n = 101) was 77% in the acute phase and 100% in the convalescent phase of SARS-CoV-2 infection when N and RBD were used as antigens in IgG and IgA specific EIAs. SARS-CoV-2 infection significantly increased humoral immune responses against the 229E and NL63 N proteins. S1 and RBD-based EIA results had a strong correlation with microneutralization test results. CONCLUSIONS: The data indicate a combination of SARS-CoV-2 S1 or RBD and N proteins and analysis of IgG and IgA immunoglobulin classes in sera provide an excellent basis for specific and sensitive serological diagnostics of COVID-19.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Imunoglobulina A/sangue , Imunoglobulina G/sangue , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Técnicas Imunoenzimáticas , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Testes de Neutralização , Fosfoproteínas/imunologia , SARS-CoV-2/imunologia , Sensibilidade e Especificidade
6.
Methods ; 183: 21-29, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682923

RESUMO

Mammalian cells express different types of RNA molecules that can be classified as protein coding RNAs (mRNA) and non-coding RNAs (ncRNAs) the latter of which have housekeeping and regulatory functions in cells. Cellular RNAs are not recognized by cellular pattern recognition receptors (PRRs) and innate immunity is not activated. RNA viruses encode and express RNA molecules that usually differ from cell-specific RNAs and they include for instance 5'capped and 5'mono- and triphosphorylated RNAs, small viral RNAs and viral RNA-protein complexes called vRNPs. These molecules are recognized by certain members of Toll-like receptor (TLR) and RIG-I-like receptor (RLR) families leading to activation of innate immune responses and the production of antiviral cytokines, such as type I and type III interferons (IFNs). Virus-specific ssRNA and dsRNA molecules that mimic the viral genomic RNAs or their replication intermediates can efficiently be produced by bacteriophage T7 DNA-dependent RNA polymerase and bacteriophage phi6 RNA-dependent RNA polymerase, respectively. These molecules can then be delivered into mammalian cells and the mechanisms of activation of innate immune responses can be studied. In addition, synthetic viral dsRNAs can be processed to small interfering RNAs (siRNAs) by a Dicer enzyme to produce a swarm of antiviral siRNAs. Here we describe the biology of RNAs, their in vitro production and delivery into mammalian cells as well as how these molecules can be used to inhibit virus replication and to study the mechanisms of activation of the innate immune system.


Assuntos
Imunidade Inata/genética , Técnicas In Vitro/métodos , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Transfecção/métodos , Animais , Células Cultivadas , RNA Polimerases Dirigidas por DNA/metabolismo , Genoma Viral , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Interferons/imunologia , Interferons/metabolismo , Cultura Primária de Células/métodos , Interferência de RNA , Vírus de RNA/genética , Vírus de RNA/imunologia , RNA de Cadeia Dupla , RNA Viral/imunologia , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/genética , Replicação Viral/imunologia
7.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463970

RESUMO

Influenza A viruses (IAVs) are viral pathogens that cause epidemics and occasional pandemics of significant mortality. The generation of efficacious vaccines and antiviral drugs remains a challenge due to the rapid appearance of new influenza virus types and antigenic variants. Consequently, novel strategies for the prevention and treatment of IAV infections are needed, given the limitations of the presently available antivirals. Here, we used enzymatically produced IAV-specific double-stranded RNA (dsRNA) molecules and Giardia intestinalis Dicer for the generation of a swarm of small interfering RNA (siRNA) molecules. The siRNAs target multiple conserved genomic regions of the IAVs. In mammalian cells, the produced 25- to 27-nucleotide-long siRNA molecules are processed by endogenous Dicer into 21-nucleotide siRNAs and are thus designated Dicer-substrate siRNAs (DsiRNAs). We evaluated the efficacy of the above DsiRNA swarm at preventing IAV infections in human primary monocyte-derived macrophages and dendritic cells. The replication of different IAV strains, including avian influenza H5N1 and H7N9 viruses, was significantly inhibited by pretransfection of the cells with the IAV-specific DsiRNA swarm. Up to 7 orders of magnitude inhibition of viral RNA expression was observed, which led to a dramatic inhibition of IAV protein synthesis and virus production. The IAV-specific DsiRNA swarm inhibited virus replication directly through the RNA interference pathway although a weak induction of innate interferon responses was detected. Our results provide direct evidence for the feasibility of the siRNA strategy and the potency of DsiRNA swarms in the prevention and treatment of influenza, including the highly pathogenic avian influenza viruses.IMPORTANCE In spite of the enormous amount of research, influenza virus is still one of the major challenges for medical virology due to its capacity to generate new variants, which potentially lead to severe epidemics and pandemics. We demonstrated here that a swarm of small interfering RNA (siRNA) molecules, including more than 100 different antiviral RNA molecules targeting the most conserved regions of the influenza A virus genome, could efficiently inhibit the replication of all tested avian and seasonal influenza A variants in human primary monocyte-derived macrophages and dendritic cells. The wide antiviral spectrum makes the virus-specific siRNA swarm a potentially efficient treatment modality against both avian and seasonal influenza viruses.


Assuntos
Vírus da Influenza A/genética , Influenza Aviária/genética , RNA Interferente Pequeno/farmacologia , Animais , Antivirais/farmacologia , Aves , Linhagem Celular , RNA Helicases DEAD-box , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/virologia , Cães , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Virus da Influenza A Subtipo H5N1/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/virologia , Influenza Humana/genética , Influenza Humana/virologia , Interferons/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Células Madin Darby de Rim Canino , Cultura Primária de Células , RNA Interferente Pequeno/genética , Ribonuclease III , Replicação Viral/efeitos dos fármacos
8.
Euro Surveill ; 25(11)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32209163

RESUMO

The first case of coronavirus disease (COVID-19) in Finland was confirmed on 29 January 2020. No secondary cases were detected. We describe the clinical picture and laboratory findings 3-23 days since the first symptoms. The SARS-CoV-2/Finland/1/2020 virus strain was isolated, the genome showing a single nucleotide substitution to the reference strain from Wuhan. Neutralising antibody response appeared within 9 days along with specific IgM and IgG response, targeting particularly nucleocapsid and spike proteins.


Assuntos
Busca de Comunicante , Infecções por Coronavirus , Coronavirus/genética , Coronavirus/isolamento & purificação , Pandemias , Pneumonia Viral , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Viagem , Adulto , Anticorpos Antivirais/sangue , Infecções Assintomáticas , Betacoronavirus , COVID-19 , Teste para COVID-19 , China , Técnicas de Laboratório Clínico , Coronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Feminino , Finlândia , Imunofluorescência , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Testes de Neutralização , Pneumonia Viral/diagnóstico , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/etiologia , Síndrome Respiratória Aguda Grave/virologia , Proteínas do Envelope Viral
9.
Am J Pathol ; 186(4): 938-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26896692

RESUMO

The single nucleotide polymorphism located within the IFNL3 (also known as IL28B) promoter is one of the host factors associated with hepatitis C virus (HCV) clearance by interferon (IFN)-α therapy; however the mechanism remains unknown. We investigated how IL28B gene polymorphism influences HCV clearance with infected primary human hepatocytes, liver biopsies, and hepatoma cell lines. Our study confirms that the rs12979860-T/T genotype has a strong correlation with ss469415590-ΔG/ΔG single nucleotide polymorphism that produces IFN-λ4 protein. We found that IFN-α and IFN-λ1 antiviral activity against HCV was impaired in IL28B T/T infected hepatocytes compared with C/C genotype. Western blot analysis showed that IL28B TT genotype hepatocytes expressed higher levels of IFN-λ proteins (IL28B, IL-29), preactivated IFN-stimulated gene (ISG) expression, and impaired Stat phosphorylation when stimulated with either IFN-α or IFN-λ1. Furthermore, we showed that silencing IFN-λ1 in T/T cell line reduced basal ISG expression and improved antiviral activity. Likewise, overexpression of IFN-λ (1 to 4) in C/C cells induced basal ISG expression and prevented IFN-α antiviral activity. We showed that IFN-λ4, produced at low level only in T/T cells induced expression of IL28B and IL-29 and prevented IFN-α antiviral activity in HCV cell culture. Our results suggest that IFN-λ4 protein expression associated with the IL28B-T/T variant preactivates the Janus kinase-Stat signaling, leading to impaired HCV clearance by both IFN-α and IFN-λ.


Assuntos
Hepatite C Crônica/tratamento farmacológico , Interleucinas/genética , Polimorfismo de Nucleotídeo Único/genética , Antivirais/farmacologia , Genótipo , Hepacivirus/genética , Hepacivirus/isolamento & purificação , Hepatite C Crônica/virologia , Hepatócitos/metabolismo , Humanos , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Interferons , Neoplasias Hepáticas/metabolismo
10.
J Gen Virol ; 97(2): 344-355, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26602089

RESUMO

In this study we assessed the ability of Middle East respiratory syndrome coronavirus (MERS-CoV) to replicate and induce innate immunity in human monocyte-derived macrophages and dendritic cells (MDDCs), and compared it with severe acute respiratory syndrome coronavirus (SARS-CoV). Assessments of viral protein and RNA levels in infected cells showed that both viruses were impaired in their ability to replicate in these cells. Some induction of IFN-λ1, CXCL10 and MxA mRNAs in both macrophages and MDDCs was seen in response to MERS-CoV infection, but almost no such induction was observed in response to SARS-CoV infection. ELISA and Western blot assays showed clear production of CXCL10 and MxA in MERS-CoV-infected macrophages and MDDCs. Our data suggest that SARS-CoV and MERS-CoV replicate poorly in human macrophages and MDDCs, but MERS-CoV is nonetheless capable of inducing a readily detectable host innate immune response. Our results highlight a clear difference between the viruses in activating host innate immune responses in macrophages and MDDCs, which may contribute to the pathogenesis of infection.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Macrófagos/imunologia , Macrófagos/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Replicação Viral , Adulto , Quimiocina CXCL10/metabolismo , Humanos , Imunidade Inata , Proteínas de Resistência a Myxovirus/metabolismo , RNA Viral/análise , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Proteínas Virais/análise
11.
J Virol ; 89(23): 12014-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26378160

RESUMO

UNLABELLED: Influenza B virus causes annual epidemics and, along with influenza A virus, accounts for substantial disease and economic burden throughout the world. Influenza B virus infects only humans and some marine mammals and is not responsible for pandemics, possibly due to a very low frequency of reassortment and a lower evolutionary rate than that of influenza A virus. Influenza B virus has been less studied than influenza A virus, and thus, a comparison of influenza A and B virus infection mechanisms may provide new insight into virus-host interactions. Here we analyzed the early events in influenza B virus infection and interferon (IFN) gene expression in human monocyte-derived macrophages and dendritic cells. We show that influenza B virus induces IFN regulatory factor 3 (IRF3) activation and IFN-λ1 gene expression with faster kinetics than does influenza A virus, without a requirement for viral protein synthesis or replication. Influenza B virus-induced activation of IRF3 required the fusion of viral and endosomal membranes, and nuclear accumulation of IRF3 and viral NP occurred concurrently. In comparison, immediate early IRF3 activation was not observed in influenza A virus-infected macrophages. Experiments with RIG-I-, MDA5-, and RIG-I/MDA5-deficient mouse fibroblasts showed that RIG-I is the critical pattern recognition receptor needed for the influenza B virus-induced activation of IRF3. Our results show that innate immune mechanisms are activated immediately after influenza B virus entry through the endocytic pathway, whereas influenza A virus avoids early IRF3 activation and IFN gene induction. IMPORTANCE: Recently, a great deal of interest has been paid to identifying the ligands for RIG-I under conditions of natural infection, as many previous studies have been based on transfection of cells with different types of viral or synthetic RNA structures. We shed light on this question by analyzing the earliest step in innate immune recognition of influenza B virus by human macrophages. We show that influenza B virus induces IRF3 activation, leading to IFN gene expression after viral RNPs (vRNPs) are released into the cytosol and are recognized by RIG-I receptor, meaning that the incoming influenza B virus is already able to activate IFN gene expression. In contrast, influenza A (H3N2) virus failed to activate IRF3 at very early times of infection, suggesting that there are differences in innate immune recognition between influenza A and B viruses.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica/imunologia , Vírus da Influenza B/imunologia , Influenza Humana/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interleucinas/metabolismo , Transdução de Sinais/imunologia , Animais , Linhagem Celular , Proteína DEAD-box 58 , Células Dendríticas/imunologia , Interações Hospedeiro-Patógeno , Humanos , Immunoblotting , Fator Regulador 3 de Interferon/genética , Interferons , Interleucinas/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Receptores Imunológicos
12.
Sci Total Environ ; 943: 173692, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38825193

RESUMO

Despite its popularity for water activities, such as swimming, surfing, fishing, and rafting, inland and coastal bathing areas occasionally experience outbreaks of highly pathogenic avian influenza virus (HPAI), including A(H5N1) clade 2.3.4.4b. Asymptomatic infections and symptomatic outbreaks often impact many aquatic birds, which increase chances of spill-over events to mammals and pose concerns for public health. This review examined the existing literature to assess avian influenza virus (AIV) transmission risks to beachgoers and the general population. A comprehensive understanding of factors governing such crossing of the AIV host range is currently lacking. There is limited knowledge on key factors affecting risk, such as species-specific interactions with host cells (including binding, entry, and replication via viral proteins hemagglutinin, neuraminidase, nucleoprotein, and polymerase basic protein 2), overcoming host restrictions, and innate immune response. AIV efficiently transmits between birds and to some extent between marine scavenger mammals in aquatic environments via consumption of infected birds. However, the current literature lacks evidence of zoonotic AIV transmission via contact with the aquatic environment or consumption of contaminated water. The zoonotic transmission risk of the circulating A(H5N1) clade 2.3.4.4b virus to the general population and beachgoers is currently low. Nevertheless, it is recommended to avoid direct contact with sick or dead birds and to refrain from bathing in locations where mass bird mortalities are reported. Increasing reports of AIVs spilling over to non-human mammals have raised valid concerns about possible virus mutations that lead to crossing the species barrier and subsequent risk of human infections and outbreaks.


Assuntos
Aves , Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Humanos , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Animais , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Monitoramento Ambiental , Praias , Saúde Única
13.
Commun Med (Lond) ; 4(1): 28, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396065

RESUMO

BACKGROUND: Vaccinations against the SARS-CoV-2 are still crucial in combating the ongoing pandemic that has caused more than 700 million infections and claimed almost 7 million lives in the past four years. Omicron (B.1.1.529) variants have incurred mutations that challenge the protection against infection and severe disease by the current vaccines, potentially compromising vaccination efforts. METHODS: We analyzed serum samples taken up to 9 months post third dose from 432 healthcare workers. Enzyme-linked immunosorbent assays (ELISA) and microneutralization tests (MNT) were used to assess the prevalence of vaccine-induced neutralizing antibodies against various SARS-CoV-2 Omicron variants. RESULTS: In this serological analysis we show that SARS-CoV-2 vaccine combinations of BNT162b2, mRNA-1273, and ChAdOx1 mount SARS-CoV-2 binding and neutralizing antibodies with similar kinetics, but with differing neutralization capabilities. The most recent Omicron variants, BQ.1.1 and XBB.1.5, show a significant increase in the ability to escape vaccine and infection-induced antibody responses. Breakthrough infections in thrice vaccinated adults were seen in over 50% of the vaccinees, resulting in a stronger antibody response than without infection. CONCLUSIONS: Different three-dose vaccine combinations seem to induce considerable levels of neutralizing antibodies against most SARS-CoV-2 variants. However, the ability of the newer variants BQ1.1 and XBB 1.5 to escape vaccine-induced neutralizing antibody responses underlines the importance of updating vaccines as new variants emerge.


During the COVID-19 pandemic, mass vaccination efforts against SARS-CoV-2 infection have provided effective protection against the virus and helped reduce the severity of symptoms in infected individuals. However, it is not well established whether the existing vaccines can provide the same protection against new and emerging SARS-CoV-2 variants that develop over time as the virus evolves. In this study, we tested combinations of three-dose COVID-19 vaccines given in random order to protect against all SARS-CoV-2 variants in circulation including the newest being Omicron variants. We demonstrate that more than half of the population who received the three-dose vaccine combinations were infected with SARS-CoV-2 Omicron variants after receiving the last vaccine dose. These findings indicate the need to develop new vaccine candidates against emerging SARS-CoV-2 variants.

14.
J Virol ; 86(20): 11183-93, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22855501

RESUMO

The activation of the interferon (IFN) system, which is triggered largely by the recognition of viral nucleic acids, is one of the most important host defense reactions against viral infections. Although influenza A and B viruses, which both have segmented negative-strand RNA genomes, share major structural similarities, they have evolutionarily diverged, with total genetic incompatibility. Here we compare antiviral-inducing mechanisms during infections with type A and B influenza viruses in human dendritic cells. We observed that IFN responses are induced significantly faster in cells infected with influenza B virus than in cells infected with type A influenza virus and that the early induction of antiviral gene expression is mediated by the activation of the transcription factor IFN regulatory factor 3 (IRF3). We further demonstrate that influenza A virus infection activates IFN responses only after viral RNA (vRNA) synthesis, whereas influenza B virus induces IFN responses even if its infectivity is destroyed by UV treatment. Thus, initial viral transcription, replication, and viral protein synthesis are dispensable for influenza B virus-induced antiviral responses. Moreover, vRNA molecules from both type A and B viruses are equally potent activators of IFN induction, but incoming influenza B virus structures are recognized directly in the cytosol, while influenza A virus is able to evade early recognition. Collectively, our data provide new evidence of a novel antiviral evasion strategy for influenza A virus without a contribution of the viral NS1 protein, and this opens up new insights into different influenza virus pathogenicities.


Assuntos
Células Dendríticas/virologia , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Vírus da Influenza B/imunologia , Vírus da Influenza B/patogenicidade , Fator Regulador 3 de Interferon/metabolismo , Interferons/biossíntese , Animais , Linhagem Celular , Células Dendríticas/imunologia , Cães , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Influenza Humana/imunologia , Interferons/imunologia , Células Madin Darby de Rim Canino , RNA Viral/biossíntese , Internalização do Vírus
15.
J Immunol ; 187(4): 1713-21, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21742966

RESUMO

Recognition of viral genetic material takes place via several different receptor systems, such as retinoic acid-inducible gene I-like receptors and TLRs 3, 7, 8, and 9. At present, systematic comparison of the ability of different types of RNAs to induce innate immune responses in human immune cells has been limited. In this study, we generated bacteriophage 6 and influenza A virus-specific ssRNA and dsRNA molecules ranging from 58 to 2956 nt. In human monocyte-derived dendritic cells (moDCs), short dsRNAs efficiently upregulated the expression of IFN (IFN-α, IFN-ß, and IFN-λ1) and proinflammatory (TNF-α, IL-6, IL-12, and CXCL10) cytokine genes. These genes were also induced by ssRNA molecules, but size-specific differences were not as pronounced as with dsRNA molecules. Dephosphorylation of short ssRNA and dsRNA molecules led to a dramatic reduction in their ability to stimulate innate immune responses. Such a difference was not detected for long ssRNAs. RNA-induced cytokine responses correlated well with IFN regulatory factor 3 phosphorylation, suggesting that IFN regulatory factor 3 plays a major role in both ssRNA- and dsRNA-activated responses in human moDCs. We also found that IFN gene expression was efficiently stimulated following recognition of short dsRNAs by retinoic acid-inducible gene I and TLR3 in human embryonic kidney 293 cells, whereas ssRNA-induced responses were less dependent on the size of the RNA molecule. Our data suggest that human moDCs are extremely sensitive in recognizing foreign RNA, and the responses depend on RNA size, form (ssRNA versus dsRNA), and the level of 5' phosphorylation.


Assuntos
Bacteriófago phi 6/imunologia , Células Dendríticas/imunologia , Imunidade Inata/imunologia , Vírus da Influenza A/imunologia , Monócitos/imunologia , RNA de Cadeia Dupla/imunologia , RNA Viral/imunologia , Citocinas/imunologia , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Fator Regulador 3 de Interferon/imunologia , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia , RNA de Cadeia Dupla/farmacologia , RNA Viral/farmacologia , Receptores Toll-Like/imunologia , Transativadores , Fatores de Transcrição/imunologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
16.
Front Bioeng Biotechnol ; 11: 1129111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064222

RESUMO

SARS-CoV-2 emerged at the end of 2019, and like other novel pathogens causing severe symptoms, WHO recommended heightened biosafety measures for laboratories working with the virus. The positive-stranded genomic RNA of coronaviruses has been known to be infectious since the 1970s, and overall, all experiments with the possibility of SARS-CoV-2 propagation are carried out in higher containment level laboratories. However, as SARS-CoV-2 RNA has been routinely handled in BSL-2 laboratories, the question of the true nature of RNA infectiousness has risen along with discussion of appropriate biosafety measures. Here, we studied the ability of native SARS-CoV-2 genomic RNA to produce infectious viruses when transfected into permissive cells and discussed the biosafety control measures related to these assays. In transfection assays large quantities of genomic vRNA of SARS-CoV-2 was required for a successful production of infectious viruses. However, the quantity of vRNA alone was not the only factor, and especially when the transfected RNA was derived from infected cells, even small amounts of genomic vRNA was enough for an infection. Virus replication was found to start rapidly after transfection, and infectious viruses were detected in the cell culture media at 24 h post-transfection. In addition, silica membrane-based kits were shown to be as good as traditional TRI-reagent based methods in extracting high-quality, 30 kb-long genomic vRNA. Taken together, our data indicates that all transfection experiments with samples containing genomic SARS-CoV-2 RNA should be categorized as a propagative work and the work should be conducted only in a higher containment BSL-3 laboratory.

17.
Vaccine ; 41(26): 3813-3823, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37142461

RESUMO

BACKGROUND: During the COVID-19 pandemic multiple vaccines were rapidly developed and widely used throughout the world. At present there is very little information on COVID-19 vaccine interactions with primary human immune cells such as peripheral blood mononuclear cells (PBMCs), monocyte-derived macrophages and dendritic cells (moDCs). METHODS: Human PBMCs, macrophages and moDCs were stimulated with different COVID-19 vaccines, and the expression of interferon (IFN-λ1, IFN-α1), pro-inflammatory (IL-1ß, IL-6, IL-8, IL-18, CXCL-4, CXCL-10, TNF-α) and Th1-type cytokine mRNAs (IL-2, IFN-γ) were analyzed by qPCR. In addition, the expression of vaccine induced spike (S) protein and antiviral molecules were studied in primary immune cells and in A549 lung epithelial cells. RESULTS: Adenovirus vector (Ad-vector) vaccine AZD1222 induced high levels of IFN-λ1, IFN-α1, CXCL-10, IL-6, and TNF-α mRNAs in PBMCs at early time points of stimulation while the expression of IFN-γ and IL-2 mRNA took place at later times. AZD1222 also induced IFN-λ1, CXCL-10 and IL-6 mRNA expression in monocyte-derived macrophages and DCs in a dose-dependent fashion. AZD1222 also activated the phosphorylation of IRF3 and induced MxA expression. BNT162b2 and mRNA-1273 mRNA vaccines failed to induce or induced very weak cytokine gene expression in all cell models. None of the vaccines enhanced the expression of CXCL-4. AZD1222 and mRNA-1273 vaccines induced high expression of S protein in all studied cells. CONCLUSIONS: Ad-vector vaccine induces higher IFN and pro-inflammatory responses than the mRNA vaccines in human immune cells. This data shows that AZD1222 readily activates IFN and pro-inflammatory cytokine gene expression in PBMCs, macrophages and DCs, but fails to further enhance CXCL-4 mRNA expression.


Assuntos
COVID-19 , Vacinas , Humanos , Interferons/metabolismo , Leucócitos Mononucleares , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Fator de Necrose Tumoral alfa/metabolismo , Vacinas de mRNA , Vacina BNT162 , Vacina de mRNA-1273 contra 2019-nCoV , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Pandemias , Células Dendríticas , Citocinas/metabolismo , Macrófagos , RNA Mensageiro/metabolismo , Adenoviridae
18.
Front Immunol ; 14: 1099246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756112

RESUMO

Introduction: The prime-boost COVID-19 mRNA vaccination strategy has proven to be effective against severe COVID-19 disease and death. However, concerns have been raised due to decreasing neutralizing antibody levels after COVID-19 vaccination and due to the emergence of new immuno-evasive SARS-CoV-2 variants that may require additional booster vaccinations. Methods: In this study, we analyzed the humoral and cell-mediated immune responses against the Omicron BA.1 and BA.2 subvariants in Finnish healthcare workers (HCWs) vaccinated with three doses of COVID-19 mRNA vaccines. We used enzyme immunoassay and microneutralization test to analyze the levels of SARS-CoV-2 specific IgG antibodies in the sera of the vaccinees and the in vitro neutralization capacity of the sera. Activation induced marker assay together with flow cytometry and extracellular cytokine analysis was used to determine responses in SARS-CoV-2 spike protein stimulated PBMCs. Results: Here we show that within the HCWs, the third mRNA vaccine dose recalls both humoral and T cell-mediated immune responses and induces high levels of neutralizing antibodies against Omicron BA.1 and BA.2 variants. Three weeks after the third vaccine dose, SARS-CoV-2 wild type spike protein-specific CD4+ and CD8+ T cells are observed in 82% and 71% of HCWs, respectively, and the T cells cross-recognize both Omicron BA.1 and BA.2 spike peptides. Although the levels of neutralizing antibodies against Omicron BA.1 and BA.2 decline 2.5 to 3.8-fold three months after the third dose, memory CD4+ T cell responses are maintained for at least eight months post the second dose and three months post the third vaccine dose. Discussion: We show that after the administration of the third mRNA vaccine dose the levels of both humoral and cell-mediated immune responses are effectively activated, and the levels of the spike-specific antibodies are further elevated compared to the levels after the second vaccine dose. Even though at three months after the third vaccine dose antibody levels in sera decrease at a similar rate as after the second vaccine dose, the levels of spike-specific CD4+ and CD8+ T cells remain relatively stable. Additionally, the T cells retain efficiency in cross-recognizing spike protein peptide pools derived from Omicron BA.1 and BA.2 subvariants. Altogether our results suggest durable cellmediated immunity and protection against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunidade Celular , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
19.
Nat Commun ; 14(1): 1637, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964125

RESUMO

The emergence of increasingly immunoevasive SARS-CoV-2 variants emphasizes the need for prophylactic strategies to complement vaccination in fighting the COVID-19 pandemic. Intranasal administration of neutralizing antibodies has shown encouraging protective potential but there remains a need for SARS-CoV-2 blocking agents that are less vulnerable to mutational viral variation and more economical to produce in large scale. Here we describe TriSb92, a highly manufacturable and stable trimeric antibody-mimetic sherpabody targeted against a conserved region of the viral spike glycoprotein. TriSb92 potently neutralizes SARS-CoV-2, including the latest Omicron variants like BF.7, XBB, and BQ.1.1. In female Balb/c mice intranasal administration of just 5 or 50 micrograms of TriSb92 as early as 8 h before but also 4 h after SARS-CoV-2 challenge can protect from infection. Cryo-EM and biochemical studies reveal triggering of a conformational shift in the spike trimer as the inhibitory mechanism of TriSb92. The potency and robust biochemical properties of TriSb92 together with its resistance against viral sequence evolution suggest that TriSb92 could be useful as a nasal spray for protecting susceptible individuals from SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Animais , Camundongos , Humanos , Administração Intranasal , COVID-19/prevenção & controle , Pandemias , Anticorpos Neutralizantes , Camundongos Endogâmicos BALB C , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética
20.
J Virol Methods ; 304: 114527, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35354068

RESUMO

The objective of this study was to determine the inactivation efficiency of common sample preparation reagents against highly pathogenic avian influenza A (HPAI) H5N1 virus. HPAI H5N1 virus has caused infections in humans with a mortality rate of over 50%. Due to the high mortality and the risk of aerosol transmission of that virus to humans and birds, infectious HPAI H5N1 viruses are contained in a biosafety level 3 laboratory. However, many procedures for further molecular analyses would be easier in lower biosafety conditions. To ensure the laboratory safety the successful inactivation procedures should be demonstrated before the samples are transferred to a lower containment facility. We tested the inactivation capacity of commonly used cell lysis buffer radio-immuno precipitation assay (RIPA) buffer for protein samples, cell fixatives methanol (MeOH) and paraformaldehyde (PFA) and guanidine isothiocyanate-containing lysis buffer for RNA isolation (RLT, Qiagen) in H5N1-infected cells. Based on our results RLT buffer, 90% MeOH (20 min, -20 °C) and 4% PFA (30 min, RT) all completely inactivated the HPAI H5N1 virus. However, RIPA buffer alone was not sufficient to inactivate the HPAI H5N1 virus in infected cell samples but, instead, combining RIPA lysis buffer and boiling for 10 min the samples in Laemmli buffer led to complete inactivation of the virus.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Aves , Humanos , Indicadores e Reagentes , Influenza Aviária/diagnóstico , Influenza Aviária/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA