Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(15): 4973-4985, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329489

RESUMO

Olive mill wastewater (OMW) is a zero-cost substrate for numerous value-added compounds. Although several studies on the production of lipids and carotenoids by Rhodotorula glutinis in OMW exist, none of them has specifically focused on the conditions for a target lipid or carotenoid. This study presents cultivation conditions that selectively stimulate the cell biomass, individual carotenoids and lipids. It was found that supplemental carbon and nitrogen sources as well as illumination affected cell biomass the most. High temperature, low initial pH, illumination, lack of urea and presence of glycerol stimulated the lipid synthesis. The highest total lipid content obtained in undiluted OMW supplemented with urea was 11.08 ± 0.17% (w/w) whilst it was 41.40 ± 0.21% (w/w) when supplemented with glycerol. Moreover, the main fatty acid produced by R. glutinis in all media was oleic acid, whose fraction reached 63.94 ± 0.58%. Total carotenoid yield was significantly increased with low initial pH, high temperature, illumination, certain amounts of urea, glycerol and cultivation time. Up to 192.09 ± 0.16 µg/g cell carotenoid yield was achieved. Torularhodin could be selectively produced at high pH, low temperature and with urea and glycerol supplementation. To selectively induce torulene synthesis, cultivation conditions should have low pH, high temperature and illumination. In addition, low pH, high temperature and urea supplementation served high production of ß-carotene. Up to 85.40 ± 0.76, 80.67 ± 1.40 and 39.45 ± 0.69% of torulene, torularhodin and ß-carotene, respectively, were obtained under selected conditions. KEY POINTS: • Cultivation conditions selectively induced target carotenoids and lipids • 41.40 ± 0.21% (w/w) lipid content and 192.09 ± 0.16 µg/g cell carotenoid yield were achieved • Markedly high selectivity values for torularhodin and torulene were achieved.


Assuntos
Olea , Rhodotorula , beta Caroteno , Águas Residuárias , Glicerol , Carotenoides , Ácidos Graxos
2.
Artigo em Inglês | MEDLINE | ID: mdl-22471596

RESUMO

The simultaneous production production of superoxide (SOD) and catalase (CAT) from Rhodotorula glutinis was studied. The effects of temperature, initial medium pH, and carbon source on the enzyme activities were investigated. Temperature and carbon sources were found to have significant effects on the enzyme activities. 10°C provided the highest specific CAT and SOD activities as 22.6 U/mg protein and 170 U/mg protein, respectively. Glycerol was found to be the best carbon source for enzyme activities, providing 113 U/mg protein for CAT and 125 U/mg protein for SOD, which were also the highest activities obtained in the present study.


Assuntos
Catalase/biossíntese , Proteínas Fúngicas/biossíntese , Rhodotorula/enzimologia , Rhodotorula/crescimento & desenvolvimento , Superóxido Dismutase/biossíntese , Animais , Carbono/metabolismo , Técnicas de Cultura de Células , Ativação Enzimática , Glicerol/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Estresse Oxidativo , Temperatura
3.
Waste Biomass Valorization ; 12(10): 5329-5346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33727990

RESUMO

ABSTRACT: Olive leaf as an agricultural waste contains valuable bioactive compounds that are mainly used for pharmaceutical and cosmetic industries. Lately the major component, oleuropein, has gained extra attention due to the anti-viral activity against SARS-CoV-2 that causes Coronavirus disease (Covid-19). In this study, extraction of the bioactive compounds from olive leaves was conducted using a non-conventional and green method. New generation green solvents, natural deep eutectic solvents (NADES) were used in combination with ultrasound assisted extraction. Screening of NADES type, temperature, and particle size were investigated using one-pot-at-a-time method while, NADES amount and liquid-to-solid ratio were optimized using experimental design. The results were evaluated in terms of total polyphenol yield (YTP), total flavonoid yield (YTF) and antiradical activity (AAR). At the optimized conditions, the highest total polyphenol yield and the highest total flavonoid yield were achieved with choline chloride-fructose-water (CFW) (5:2:5) as 187.31 ± 10.3 mg gallic acid equivalent g-1 dw and 12.75 ± 0.6 mg apigenin equivalent g-1 dw, respectively. The extracts were also analyzed for oleuropein, caffeic acid and luteolin contents. The highest amount of oleuropein and caffeic acid were extracted by glucose-fructose-water (GFW) (1:1:11) as 1630.80 mg kg-1 dw and 112.77 mg kg-1 dw, respectively. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s12649-021-01411-3) contains supplementary material, which is available to authorized users.

4.
Prep Biochem Biotechnol ; 39(2): 124-41, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19291575

RESUMO

Several treatments were employed on Candida rugosa lipase (CRL) to improve its biocatalytic performance. Besides conventional alcohol treatment conditions, the effects of pH of the buffer solution used in the treatment as well as the changes in stirring, dialysis, and centrifugation steps of the treatment procedure were investigated for the first time for the resolution of racemic naproxen methyl ester. The highest enantioselectivity and conversion in S-naproxen production were achieved by CRL treated with pH 7.5 buffer solution. The elimination of the centrifugation step resulted in an increase in the enantioselectivity, whereas alcohol treatment of CRL was found to be inconvenient for S-naproxen production. Higher activity for p-nitrophenyl acetate was achieved when 20% butanol and pH 4 buffer solution were used, and when dialysis and stirring times were shortened.


Assuntos
Álcoois/farmacologia , Candida/enzimologia , Lipase/metabolismo , Naproxeno/química , Biocatálise/efeitos dos fármacos , Soluções Tampão , Ésteres/síntese química , Ésteres/química , Concentração de Íons de Hidrogênio , Hidrólise , Lipase/antagonistas & inibidores , Naproxeno/análogos & derivados , Naproxeno/síntese química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA