Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1864(6): 738-746, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26945516

RESUMO

Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 ß subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection.


Assuntos
Nucleopoliedrovírus/patogenicidade , Complexo de Endopeptidases do Proteassoma/química , Proteômica , Spodoptera/citologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Eletroforese em Gel Bidimensional , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Virus Res ; 253: 68-76, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29890203

RESUMO

The protein VCP/p97 (also named CDC48 and TER94) belongs to a type II subfamily of the AAA+ATPases and controls cellular proteostasis by acting upstream of proteasomes in the ubiquitin-proteasome protein degradation pathway. The function of VCP/p97 in the baculovirus infection cycle in insect cells remains unknown. Here, we identified VCP/p97 in the fall armyworm Spodoptera frugiperda (Sf9) cells and analyzed the replication of the Autographa californica multiple nucleopolyhedrovirus, AcMNPV, in Sf9 cells in which the VCP/p97 function was inhibited. The specific allosteric inhibitor of the VCP/p97 ATPase activity, NMS-873, did not deplete VCP/p97 in infected cells but caused a dose-dependent inhibition of viral DNA synthesis and efficiently suppressed expression of viral proteins and production of budded virions. NMS-873 caused accumulation of ubiquitinated proteins in a manner similar to the inhibitor of proteasome activity, Bortezomib. This suggests the essential function of VCP/p97 in the baculovirus infection cycle might be associated, at least in part, with the ubiquitin-proteasome system.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Insetos/metabolismo , Nucleopoliedrovírus/fisiologia , Spodoptera/enzimologia , Adenosina Trifosfatases/genética , Animais , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Nucleopoliedrovírus/genética , Células Sf9 , Spodoptera/genética , Spodoptera/virologia , Replicação Viral
3.
Virus Res ; 192: 1-5, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25128466

RESUMO

The induction of heat shock proteins in baculovirus infected cells is well documented. However a role of these chaperones in infection cycle remains unknown. The observation that HSP70s are associated with virions of different baculoviruses reported by several researchers suggests that HSPs might be structural components of viruses or involved in virion assembly. These hypotheses were examined by using a novel inhibitor of the ATPase and chaperoning activity of HSP/HSC70s, VER-155008. When VER-155008 was added early in infection, the synthesis of viral proteins, genome replication and the production of budded virions (BV) were markedly inhibited indicating the dependence of virus reproduction on host chaperones. However, BV production was unaffected when VER-155008 was added in the mid-replication phase which is after accumulation of products required for completion of the viral DNA replication. These results suggest that the final stages in assembly of BV and their egress from cells do not depend on chaperone activity of host HSP/HSC70s.


Assuntos
Proteínas de Choque Térmico HSC70/metabolismo , Interações Hospedeiro-Patógeno , Nucleopoliedrovírus/fisiologia , Spodoptera/virologia , Vírion/fisiologia , Liberação de Vírus , Animais , Proteínas de Insetos/metabolismo , Montagem de Vírus
4.
Virology ; 436(1): 49-58, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23123012

RESUMO

Baculovirus AcMNPV causes proteotoxicity in Sf9 cells as revealed by accumulation of ubiquitinated proteins and aggresomes in the course of infection. Inhibition of proteasomes by lactacystin increased markedly the stock of ubiquitinated proteins indicating a primary role of proteasomes in detoxication. The proteasomes were present in Sf9 cells as 26S and 20S complexes whose protease activity did not change during infection. Proteasome inhibition caused a delay in the initiation of viral DNA replication suggesting an important role of proteasomes at early stages in infection. However, lactacystin did not affect ongoing replication indicating that active proteasomes are not required for genome amplification. At late stages in infection (24-48 hpi), aggresomes containing the ubiquitinated proteins and HSP/HSC70s showed gradual fusion with the vacuole-like structures identified as lysosomes by antibody to cathepsin D. This result suggests that lysosomes may assist in protection against proteotoxicity caused by baculoviruses absorbing the ubiquitinated proteins.


Assuntos
Lisossomos/metabolismo , Nucleopoliedrovírus , Complexo de Endopeptidases do Proteassoma/metabolismo , Células Sf9/virologia , Proteínas Ubiquitinadas/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Linhagem Celular , Inibidores de Cisteína Proteinase/farmacologia , Replicação do DNA/efeitos dos fármacos , DNA Viral/genética , Proteínas de Choque Térmico HSC70/metabolismo , Mariposas/virologia , Inibidores de Proteassoma/farmacologia , Spodoptera/citologia , Spodoptera/virologia , Ubiquitinação , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA