Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(30): e2220889120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459517

RESUMO

Monochloramine, dichloramine and trichloramine (NH2Cl, NHCl2, NCl3) are measured in the ambient atmosphere, in downtown Toronto in summer (median 39, 15 and 2.8 ppt) and winter (median 11, 7.3 and 0.7 ppt). NCl3 and NHCl2 were also measured in summer (median 1.3 and 14 ppt) from a suburban Toronto location. Measurements at two locations demonstrate prevalence of chloramines in an urban atmosphere. At both sites, NCl3 exhibits a strong diel pattern with maximum values during the night, and photolytic loss with sunrise. At the downtown site, a strong positive correlation between NH2Cl and NHCl2 in the summer night indicates a common source, with daily average peak mixing ratios approaching 500 and 250 ppt, respectively. As a previously unidentified source of chlorine (Cl) atoms, we demonstrate that NCl3 photolysis contributes 49 to 82% of the total local summertime Cl production rate at different times during the day with an average noontime peak of 3.8 × 105 atoms/cm3/s, with smaller contributions from ClNO2 and Cl2. Photolysis of NH2Cl and NHCl2 may augment this Cl production rate. Our measurements also demonstrate a daytime enhancement of chloroacetone in both the summer and winter, demonstrating the importance of Cl photochemistry. The results suggest that chloramines are an important source of Cl atoms in urban areas, with potential impacts on the abundance of organic compounds, ozone, nitrogen oxides, and particulate matter. Future studies should explore the vertical gradients of chloramines and their contribution to Cl production throughout the boundary layer.

2.
Chem Rev ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36630720

RESUMO

Organic peroxides (POs) are organic molecules with one or more peroxide (-O-O-) functional groups. POs are commonly regarded as chemically labile termination products from gas-phase radical chemistry and therefore serve as temporary reservoirs for oxidative radicals (HOx and ROx) in the atmosphere. Owing to their ubiquity, active gas-particle partitioning behavior, and reactivity, POs are key reactive intermediates in atmospheric multiphase processes determining the life cycle (formation, growth, and aging), climate, and health impacts of aerosol. However, there remain substantial gaps in the origin, molecular diversity, and fate of POs due to their complex nature and dynamic behavior. Here, we summarize the current understanding on atmospheric POs, with a focus on their identification and quantification, state-of-the-art analytical developments, molecular-level formation mechanisms, multiphase chemical transformation pathways, as well as environmental and health impacts. We find that interactions with SO2 and transition metal ions are generally the fast PO transformation pathways in atmospheric liquid water, with lifetimes estimated to be minutes to hours, while hydrolysis is particularly important for α-substituted hydroperoxides. Meanwhile, photolysis and thermolysis are likely minor sinks for POs. These multiphase PO transformation pathways are distinctly different from their gas-phase fates, such as photolysis and reaction with OH radicals, which highlights the need to understand the multiphase partitioning of POs. By summarizing the current advances and remaining challenges for the investigation of POs, we propose future research priorities regarding their origin, fate, and impacts in the atmosphere.

3.
Proc Natl Acad Sci U S A ; 119(38): e2205610119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095180

RESUMO

Biomass burning organic aerosol (BBOA) in the atmosphere contains many compounds that absorb solar radiation, called brown carbon (BrC). While BBOA is in the atmosphere, BrC can undergo reactions with oxidants such as ozone which decrease absorbance, or whiten. The effect of temperature and relative humidity (RH) on whitening has not been well constrained, leading to uncertainties when predicting the direct radiative effect of BrC on climate. Using an aerosol flow-tube reactor, we show that the whitening of BBOA by oxidation with ozone is strongly dependent on RH and temperature. Using a poke-flow technique, we show that the viscosity of BBOA also depends strongly on these conditions. The measured whitening rate of BrC is described well with the viscosity data, assuming that the whitening is due to oxidation occurring in the bulk of the BBOA, within a thin shell beneath the surface. Using our combined datasets, we developed a kinetic model of this whitening process, and we show that the lifetime of BrC is 1 d or less below ∼1 km in altitude in the atmosphere but is often much longer than 1 d above this altitude. Including this altitude dependence of the whitening rate in a chemical transport model causes a large change in the predicted warming effect of BBOA on climate. Overall, the results illustrate that RH and temperature need to be considered to understand the role of BBOA in the atmosphere.


Assuntos
Atmosfera , Biomassa , Carbono , Atmosfera/química , Carbono/análise , Ozônio
4.
Environ Sci Technol ; 58(9): 4257-4267, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38380897

RESUMO

Human chemical exposure often occurs indoors, where large variability in contaminant concentrations and indoor chemical dynamics make assessments of these exposures challenging. A major source of uncertainty lies in the rates of chemical transformations which, due to high surface-to-volume ratios and rapid air change rates relative to rates of gas-phase reactions indoors, are largely gas-surface multiphase processes. It remains unclear how important such chemistry is in controlling indoor chemical lifetimes and, therefore, human exposure to both parent compounds and transformation products. We present a multimedia steady-state fugacity-based model to assess the importance of multiphase chemistry relative to cleaning and mass transfer losses, examine how the physicochemical properties of compounds and features of the indoor environment affect these processes, and investigate uncertainties pertaining to indoor multiphase chemistry and chemical lifetimes. We find that multiphase reactions can play an important role in chemical fate indoors for reactive compounds with low volatility, i.e., octanol-air equilibrium partitioning ratios (Koa) above 108, with the impact of this chemistry dependent on chemical identity, oxidant type and concentration, and other parameters. This work highlights the need for further research into indoor chemical dynamics and multiphase chemistry to constrain human exposure to chemicals in the built environment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Oxidantes
5.
Environ Sci Technol ; 58(27): 12073-12081, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38923518

RESUMO

Ozone and its oxidation products result in negative health effects when inhaled. Despite painted surfaces being the most abundant surface in indoor spaces, surface loss remains one of the largest uncertainties in the indoor ozone budget. Here, ozone uptake coefficients (γO3) on painted surfaces were measured in a flow-through reactor where 79% of the inner surfaces were removable painted glass sheets. Flat white paint initially had a high uptake coefficient (8.3 × 10-6) at 20% RH which plateaued to 1.1 × 10-6 as the paint aged in an indoor office over weeks. Increasing the RH from 0 to 75% increased γO3 by a factor of 3.0, and exposure to 134 ppb of α-terpineol for 1 h increased γO3 by a factor of 1.6 at 20% RH. RH also increases α-terpineol partitioning to paint, further increasing ozone loss, but the type of paint (flat, eggshell, satin, semigloss) had no significant effect. A kinetic multilayer model captures the dependence of γO3 on RH and the presence of α-terpineol, indicating the reacto-diffusive depth for O3 is 1 to 2 µm. Given the similarity of the kinetics on aged surfaces across many paint types and the sustained reactivity during aging, these results suggest a mechanism for catalytic loss.


Assuntos
Ozônio , Pintura , Ozônio/química , Umidade , Compostos Orgânicos Voláteis , Poluição do Ar em Ambientes Fechados
6.
Environ Sci Technol ; 58(8): 3931-3941, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38349611

RESUMO

High global plastic production volumes have led to the widespread presence of bisphenol compounds in human living and working environments. The most common bisphenol, bisphenol A (BPA), despite being endocrine disruptive and estrogenic, is still not fully banned worldwide, leading to continued human exposure via particles in air, dust, and surfaces in both outdoor and indoor environments. While its abundance is well documented, few studies have addressed the chemical transformations of BPA, the properties of its reactive products, and their toxicity. Here, the first gas-surface multiphase ozonolysis experiment of BPA thin films, at a constant ozone mixing ratio of 100 ppb, was performed in a flow tube for periods up to 24 h. Three transformation products involving the addition of 1, 2, and 3 oxygen atoms to the molecule were identified by LC-ESI-HRMS analyses. Exposure of indoor air to thin BPA surface films and BPA-containing thermal paper over periods of days validated the flow tube experiments, demonstrating the rapid nature of this multiphase ozonolysis reaction at atmospherically relevant ozone levels. Multiple transformation pathways are proposed that are likely applicable to not only BPA but also emerging commercial bisphenol products.


Assuntos
Compostos Benzidrílicos , Ozônio , Humanos , Fenóis , Ozônio/análise , Poeira/análise
7.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074793

RESUMO

Liquid crystal displays (LCDs) have profoundly shaped the lifestyle of humans. However, despite extensive use, their impacts on indoor air quality are unknown. Here, we perform flow cell experiments on three different LCDs, including a new computer monitor, a used laptop, and a new television, to investigate whether their screens can emit air constituents. We found that more than 30 volatile organic compounds (VOCs) were emitted from LCD screens, with a total screen area-normalized emission rate of up to (8.25 ± 0.90) × 109 molecules ⋅ s-1 ⋅ cm-2 In addition to VOCs, 10 liquid crystal monomers (LCMs), a commercial chemical widely used in LCDs, were also observed to be released from those LCD screens. The structural identification of VOCs is based on a "building block" hypothesis (i.e., the screen-emitted VOCs originate from the "building block chemicals" used in the manufacturing of liquid crystals), which are the key components of LCD screens. The identification of LCMs is based upon the detailed information of 362 currently produced LCMs. The emission rates of VOCs and LCMs increased by up to a factor of 9, with an increase of indoor air humidity from 23 to 58% due to water-organic interactions likely facilitating the diffusion rates of organics. These findings indicate that LCD screens are a potentially important source for indoor VOCs that has not been considered previously.


Assuntos
Poluentes Atmosféricos/química , Cristais Líquidos/química , Compostos Orgânicos Voláteis/química , Poluição do Ar em Ambientes Fechados
8.
Environ Sci Technol ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607741

RESUMO

High loadings of biomass burning (BB) aerosol particles from wildfire or residential heating sources can be present in both outdoor and indoor environments, where they deposit onto surfaces such as walls and furniture. These pollutants can interact with oxidants in both the aerosol and deposited forms. Hypochlorous acid (HOCl), a strong oxidant emitted during cleaning with chlorine-cleaning agents such as bleach, can attain mixing ratios of hundreds of ppbv indoors; moreover, lower mixing ratios are naturally present outdoors. Here, we report the heterogeneous reactivity of HOCl with wood smoke aerosol particles. After exposure to gas-phase HOCl, the particle chlorine content increased reaching chlorine-to-organic mass ratios of 0.07 with the chlorine covalently bound as organochlorine species, many of which are aromatic. Investigating individual potential BB components, we observed that unsaturated species such as coniferaldehyde and furfural react efficiently with HOCl. These observations indicate that organochlorine pollutants will form indoors when bleach cleaning a wildfire impacted space. The chlorine component of particles internally mixed with BB material and chloride initially increased, upon HOCl exposure, indicating that active chlorine recycling in the outdoor environment will be suppressed in the presence of BB emissions.

9.
Environ Sci Technol ; 57(44): 17032-17041, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37877468

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are present in a range of commercial and consumer products. These chemicals are often high-performance surfactants or nonstick/water-repellant coatings due to their chemical stability; however, this stability leads to select PFAS being environmentally persistent. To facilitate degradation, new fluorosurfactant building blocks (F7C3-O-CHF-CF2-S-CH2-CH2-OH (FESOH), F3C-O-CHF-CF2-S-CH2-CH2-OH (MeFESOH), F7C3-O-CHF-CF2-O-CH2-CH2-OH (ProFdiEOH), F7C3-O-CHF-CF2-CH2-OH (ProFEOH), and F3C-O-CHF-CF2-O-CH2-CH2-OH (MeFdiEOH)) have been systematically developed with heteroatom linkages such as ethers, thioethers, and polyfluorinated carbons. The room temperature, gas-phase OH oxidation rate constants, and products of these chemicals were monitored in an atmospheric chamber to investigate their fate in the atmosphere. Analysis was performed using online high-resolution chemical ionization mass spectrometry (CIMS) using the iodide reagent ion and via offline UPLC-MS/MS. FESOH and MeFESOH, the thioether congeners, were observed to have the largest rate constants of kFESOH = 2.82 (±0.33) and kMeFESOH = 2.17 (±0.17) (×10-12 cm3 molecules-1 s-1, respectively). First-, second-, and third-generation products of OH oxidation were observed as a function of time, while product quantification yielded ultrashort perfluoropropionic acid (PFPrA) and short polyfluoroether acid species as the terminal products for FESOH and ProFdiEOH. There was evidence for MeFESOH being fully mineralized, demonstrating the potential benign chemical architecture.


Assuntos
Fluorocarbonos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Atmosfera/química
10.
Environ Sci Technol ; 57(41): 15546-15557, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37647222

RESUMO

Unsaturated triglycerides found in food and skin oils are reactive in ambient air. However, the chemical fate of such compounds has not been well characterized in genuine indoor environments. Here, we monitored the aging of oil coatings on glass surfaces over a range of environmental conditions, using mass spectrometry, nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) techniques. Upon room air exposure (up to 17 ppb ozone), the characteristic ozonolysis products, secondary ozonides, were observed on surfaces near the cooking area of a commercial kitchen, along with condensed-phase aldehydes. In an office setting, ozonolysis is also the dominant degradation pathway for oil films exposed to air. However, for indoor enclosed spaces such as drawers, the depleted air flow makes lipid autoxidation more favorable after an induction period of a few days. Forming hydroperoxides as the major primary products, this radical-mediated peroxidation behavior is accelerated by indoor direct sunlight, but the initiation step in dark settings is still unclear. These results are in accord with radical measurements, indicating that indoor photooxidation facilitates radical formation on surfaces. Overall, many intermediate and end products observed are reactive oxygen species (ROS) that may induce oxidative stress in human bodies. Given that these species can be widely found on both food and household surfaces, their toxicological properties are worth further attention.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Humanos , Ozônio/análise , Espectrometria de Massas , Óleos , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise
11.
Environ Sci Technol ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36630690

RESUMO

Wildfires are a major source of biomass burning aerosol to the atmosphere, with their incidence and intensity expected to increase in a warmer future climate. However, the toxicity evolution of biomass burning organic aerosol (BBOA) during atmospheric aging remains poorly understood. In this study, we report a unique set of chemical and toxicological metrics of BBOA from pine wood smoldering during multiphase aging by gas-phase hydroxyl radicals (OH). Both the fresh and OH-aged BBOA show activity relevant to adverse health outcomes. The results from two acellular assays (DTT and DCFH) show significant oxidative potential (OP) and reactive oxygen species (ROS) formation in OH-aged BBOA. Also, radical concentrations in the aerosol assessed by electron paramagnetic resonance (EPR) spectroscopy increased by 50% following heterogeneous aging. This enhancement was accompanied by a transition from predominantly carbon-centered radicals (85%) in the fresh aerosol to predominantly oxygen-centered radicals (76%) following aging. Both the fresh and aged biomass burning aerosols trigger prominent antioxidant defense during the in vitro exposure, indicating the induction of oxidative stress by BBOA in the atmosphere. By connecting chemical composition and toxicity using an integrated approach, we show that short-term aging initiated by OH radicals can produce biomass burning particles with a higher particle-bound ROS generation capacity, which are therefore a more relevant exposure hazard for residents in large population centers close to wildfire regions than previously studied fresh biomass burning emissions.

12.
Environ Sci Technol ; 57(39): 14548-14557, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37729583

RESUMO

Smoke particles generated by burning biomass consist mainly of organic aerosol termed biomass burning organic aerosol (BBOA). BBOA influences the climate by scattering and absorbing solar radiation or acting as nuclei for cloud formation. The viscosity and the phase behavior (i.e., the number and type of phases present in a particle) are properties of BBOA that are expected to impact several climate-relevant processes but remain highly uncertain. We studied the phase behavior of BBOA using fluorescence microscopy and showed that BBOA particles comprise two organic phases (a hydrophobic and a hydrophilic phase) across a wide range of atmospheric relative humidity (RH). We determined the viscosity of the two phases at room temperature using a photobleaching method and showed that the two phases possess different RH-dependent viscosities. The viscosity of the hydrophobic phase is largely independent of the RH from 0 to 95%. We use the Vogel-Fulcher-Tamman equation to extrapolate our results to colder and warmer temperatures, and based on the extrapolation, the hydrophobic phase is predicted to be glassy (viscosity >1012 Pa s) for temperatures less than 230 K and RHs below 95%, with possible implications for heterogeneous reaction kinetics and cloud formation in the atmosphere. Using a kinetic multilayer model (KM-GAP), we investigated the effect of two phases on the atmospheric lifetime of brown carbon within BBOA, which is a climate-warming agent. We showed that the presence of two phases can increase the lifetime of brown carbon in the planetary boundary layer and polar regions compared to previous modeling studies. Hence, the presence of two phases can lead to an increase in the predicted warming effect of BBOA on the climate.


Assuntos
Atmosfera , Carbono , Viscosidade , Biomassa , Atmosfera/química , Aerossóis
13.
Environ Sci Technol ; 57(43): 16446-16455, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37856830

RESUMO

Energy-efficient residential building standards require the use of mechanical ventilation systems that replace indoor air with outdoor air. Transient outdoor pollution events can be transported indoors via the mechanical ventilation system and other outdoor air entry pathways and impact indoor air chemistry. In the spring of 2022, we observed elevated levels of NOx (NO + NO2) that originated outdoors, entering the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility through the mechanical ventilation system. Using measurements of NOx, ozone (O3), and volatile organic compounds (VOCs), we modeled the effect of the outdoor-to-indoor ventilation of NOx pollution on the production of nitrate radical (NO3), a potentially important indoor oxidant. We evaluated how VOC oxidation chemistry was affected by NO3 during NOx pollution events compared to background conditions. We found that nitric oxide (NO) pollution introduced indoors titrated O3 and inhibited the modeled production of NO3. NO ventilated indoors also likely ceased most gas-phase VOC oxidation chemistry during plume events. Only through the artificial introduction of O3 to the ventilation duct during a NOx pollution event (i.e., when O3 and NO2 concentrations were high relative to typical conditions) were we able to measure NO3-initiated VOC oxidation products, indicating that NO3 was impacting VOC oxidation chemistry.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Compostos Orgânicos Voláteis , Óxido Nítrico , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Dióxido de Nitrogênio/análise , Ozônio/análise , Monitoramento Ambiental
14.
Environ Sci Technol ; 57(2): 896-908, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36603843

RESUMO

The hydroxyl radical (OH) is the dominant oxidant in the outdoor environment, controlling the lifetimes of volatile organic compounds (VOCs) and contributing to the growth of secondary organic aerosols. Despite its importance outdoors, there have been relatively few measurements of the OH radical in indoor environments. During the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, elevated concentrations of OH were observed near a window during cooking events, in addition to elevated mixing ratios of nitrous acid (HONO), VOCs, and nitrogen oxides (NOX). Particularly high concentrations were measured during the preparation of a traditional American Thanksgiving dinner, which required the use of a gas stove and oven almost continually for 6 h. A zero-dimensional chemical model underpredicted the measured OH concentrations even during periods when direct sunlight illuminated the area near the window, which increases the rate of OH production by photolysis of HONO. Interferences with measurements of nitrogen dioxide (NO2) and ozone (O3) suggest that unmeasured photolytic VOCs were emitted during cooking events. The addition of a VOC that photolyzes to produce peroxy radicals (RO2), similar to pyruvic acid, into the model results in better agreement with the OH measurements. These results highlight our incomplete understanding of the nature of oxidation in indoor environments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Radical Hidroxila/análise , Radical Hidroxila/química , Fotólise , Poluição do Ar em Ambientes Fechados/análise , Óxidos de Nitrogênio/análise , Ozônio/análise , Culinária , Ácido Nitroso/análise , Ácido Nitroso/química , Poluentes Atmosféricos/análise
15.
Proc Natl Acad Sci U S A ; 117(3): 1354-1359, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31900361

RESUMO

Atmospheric sulfate aerosols have important impacts on air quality, climate, and human and ecosystem health. However, current air-quality models generally underestimate the rate of conversion of sulfur dioxide (SO2) to sulfate during severe haze pollution events, indicating that our understanding of sulfate formation chemistry is incomplete. This may arise because the air-quality models rely upon kinetics studies of SO2 oxidation conducted in dilute aqueous solutions, and not at the high solute strengths of atmospheric aerosol particles. Here, we utilize an aerosol flow reactor to perform direct investigation on the kinetics of aqueous oxidation of dissolved SO2 by hydrogen peroxide (H2O2) using pH-buffered, submicrometer, deliquesced aerosol particles at relative humidity of 73 to 90%. We find that the high solute strength of the aerosol particles significantly enhances the sulfate formation rate for the H2O2 oxidation pathway compared to the dilute solution. By taking these effects into account, our results indicate that the oxidation of SO2 by H2O2 in the liquid water present in atmospheric aerosol particles can contribute to the missing sulfate source during severe haze episodes.

16.
Environ Sci Technol ; 56(6): 3365-3374, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35230819

RESUMO

Chemical partitioning to surfaces can influence human exposure by various pathways, resulting in adverse health consequences. Clothing can act as a source, a barrier, or a transient reservoir for chemicals that can affect dermal and inhalation exposure rates. A few clothing-mediated exposure studies have characterized the accumulation of a select number of semi-volatile organic compounds (SVOCs), but systematic studies on the partitioning behavior for classes of volatile organic compounds (VOCs) and SVOCs are lacking. Here, the cloth-air equilibrium partition ratios (KCA) for carbonyl, carboxylic acid, and aromatic VOC homologous series were characterized for cellulose-based cotton fabric, using timed exposures in a real indoor setting followed by online thermal desorption and nontargeted mass spectrometric analysis. The analyzed VOCs exhibit rapid equilibration within a day. Homologous series generally show linear correlations of the logarithm of KCA with carbon number and the logarithms of the VOC vapor pressure and octanol-air equilibrium partition ratio (KOA). When expressed as a volume-normalized partition ratio, log KCA_V values are in a range of 5-8, similar to the values for previously measured SVOCs which have lower volatility. When expressed as surface area-normalized adsorption constants, KCA_S values suggest that equilibration corresponds to a saturated surface coverage of adsorbed species. Aqueous solvation may occur for the most water-soluble species such as formic and acetic acids. Overall, this new experimental approach facilitates VOC partitioning studies relevant to environmental exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental/análise , Humanos , Octanóis , Têxteis , Pressão de Vapor
17.
Environ Sci Technol ; 56(12): 7741-7750, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35671398

RESUMO

The high-temperature cooking of protein-rich foods represents an important but poorly constrained source of nitrogen-containing gases and particles to indoor and outdoor atmospheres. For example, panfrying meat may form and emit these nitrogen-containing compounds through complex chemistry occurring between heated proteins and cooking oils. Here, we simulate this cooking process by heating amino acids together with triglycerides. We explore their interactions across different temperatures, triglyceride types, and amino acid precursors to form amide-containing products. Ammonia, arising from the thermal degradation of amino acids, may react with a triglyceride's ester linkages, forming amides and promoting de-esterification reactions that break the triglyceride into volatilizable products. Additionally, triglycerides may thermally oxidize and fragment as they are heated, and the resulting oxygenated breakdown products may react with ammonia to form amides. We observed evidence for amide formation through both of these pathways, including gas-phase emissions of C2-11H5-23NO species, whose emission factors ranged from 33 to 813 µg total gas-phase amides per gram of amino acid precursor. Comparable quantities of particle-phase oleamide (C18H35NO) were emitted, ranging from 45 to 218 µg/g. The observed amide products had variable predicted toxicities, highlighting the importance of understanding their emissions from cooking and their ultimate inhalation exposure risks.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Amidas , Aminoácidos , Amônia , Culinária , Monitoramento Ambiental/métodos , Gases , Nitrogênio , Material Particulado/análise , Triglicerídeos
18.
Environ Sci Technol ; 56(12): 7598-7607, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35653434

RESUMO

Isocyanic acid (HNCO) and other nitrogen-containing volatile chemicals (organic isocyanates, hydrogen cyanide, nitriles, amines, amides) were measured during the House Observation of Microbial and Environmental Chemistry (HOMEChem) campaign. The indoor HNCO mean mixing ratio was 0.14 ± 0.30 ppb (range 0.012-6.1 ppb), higher than outdoor levels (mean 0.026 ± 0.15 ppb). From the month-long study, cooking and chlorine bleach cleaning are identified as the most important human-related sources of these nitrogen-containing gases. Gas oven cooking emits more isocyanates than stovetop cooking. The emission ratios HNCO/CO (ppb/ppm) during stovetop and oven cooking (mean 0.090 and 0.30) are lower than previously reported values during biomass burning (between 0.76 and 4.6) and cigarette smoking (mean 2.7). Bleach cleaning led to an increase of the HNCO mixing ratio of a factor of 3.5 per liter of cleaning solution used; laboratory studies indicate that isocyanates arise via reaction of nitrogen-containing precursors, such as indoor dust. Partitioned in a temperature-dependent manner to indoor surface reservoirs, HNCO was present at the beginning of HOMEChem, arising from an unidentified source. HNCO levels are higher at the end of the campaign than the beginning, indicative of occupant activities such as cleaning and cooking; however the direct emissions of humans are relatively minor.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Culinária , Cianatos , Monitoramento Ambiental , Gases , Humanos , Isocianatos , Nitrogênio
19.
Environ Sci Technol ; 56(12): 7716-7728, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35671499

RESUMO

Commonly found in atmospheric aerosols, cooking oils, and human sebum, unsaturated lipids rapidly decay upon exposure to ozone, following the Criegee mechanism. Here, the gas-surface ozonolysis of three oleic acid-based compounds was studied in a reactor and indoors. Under dry conditions, quantitative product analyses by 1H NMR indicate up to 79% molar yield of stable secondary ozonides (SOZs) in oxidized triolein and methyl oleate coatings. Elevated relative humidity (RH) significantly suppresses the SOZ yields, enhancing the formation of condensed-phase aldehydes and volatile C9 products. Along with kinetic parameters informed by molecular dynamics simulations, these results were used as constraints in a kinetic multilayer model (KM-GAP) simulating triolein ozonolysis. Covering a wide range of coating thicknesses and ozone levels, the model predicts a much faster decay near the gas-lipid interface compared to the bulk. Although the dependence of RH on SOZ yields is well predicted, the model overestimates the production of H2O2 and aldehydes. With negligible dependence on RH, the product composition for oxidized oleic acid is substantially affected by a competitive reaction between Criegee intermediates (CIs) and carboxylic acids. The resulting α-acyloxyalkyl hydroperoxides (α-AAHPs) have much higher molar yields (29-38%) than SOZs (12-16%). Overall, the ozone-lipid chemistry could affect the indoor environment through "crust" accumulation on surfaces and volatile organic compound (VOC) emission. In the atmosphere, the peroxide formation and changes in particle hygroscopicity may have effects on climate. The related health impacts are also discussed.


Assuntos
Ácido Oleico , Ozônio , Aldeídos , Humanos , Peróxido de Hidrogênio , Ácido Oleico/química , Ozônio/química , Trioleína
20.
Environ Sci Technol ; 56(19): 13573-13583, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137564

RESUMO

Despite its importance as a radical precursor and a hazardous pollutant, the chemistry of nitrous acid (HONO) in the indoor environment is not fully understood. We present results from a comparison of HONO measurements from a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) and a laser photofragmentation/laser-induced fluorescence (LP/LIF) instrument during the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign. Experiments during HOMEChem simulated typical household activities and provided a dynamic range of HONO mixing ratios. The instruments measured HONO at different locations in a house featuring a typical air change rate (ACR) (0.5 h-1) and an enhanced mixing rate (∼8 h-1). Despite the distance between the instruments, measurements from the two instruments agreed to within their respective uncertainties (slope = 0.85, R2 = 0.92), indicating that the lifetime of HONO is long enough for it to be quickly distributed indoors, although spatial gradients occurred during ventilation periods. This suggests that emissions of HONO from any source can mix throughout the house and can contribute to OH radical production in sunlit regions, enhancing the oxidative capacity indoors. Measurement discrepancies were likely due to interferences with the LP/LIF instrument as well as calibration uncertainties associated with both instruments.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Poluição do Ar em Ambientes Fechados/análise , Ácido Nitroso , Oxirredução , Ventilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA