Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(6): 3524-3545, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33660780

RESUMO

Vertebrate genomes contain major (>99.5%) and minor (<0.5%) introns that are spliced by the major and minor spliceosomes, respectively. Major intron splicing follows the exon-definition model, whereby major spliceosome components first assemble across exons. However, since most genes with minor introns predominately consist of major introns, formation of exon-definition complexes in these genes would require interaction between the major and minor spliceosomes. Here, we report that minor spliceosome protein U11-59K binds to the major spliceosome U2AF complex, thereby supporting a model in which the minor spliceosome interacts with the major spliceosome across an exon to regulate the splicing of minor introns. Inhibition of minor spliceosome snRNAs and U11-59K disrupted exon-bridging interactions, leading to exon skipping by the major spliceosome. The resulting aberrant isoforms contained a premature stop codon, yet were not subjected to nonsense-mediated decay, but rather bound to polysomes. Importantly, we detected elevated levels of these alternatively spliced transcripts in individuals with minor spliceosome-related diseases such as Roifman syndrome, Lowry-Wood syndrome and early-onset cerebellar ataxia. In all, we report that the minor spliceosome informs splicing by the major spliceosome through exon-definition interactions and show that minor spliceosome inhibition results in aberrant alternative splicing in disease.


Assuntos
Processamento Alternativo , Éxons , Íntrons , Spliceossomos/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatias/genética , Células Cultivadas , Ataxia Cerebelar/genética , Transtornos do Crescimento/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Camundongos , Microcefalia/genética , Degradação do RNAm Mediada por Códon sem Sentido , Osteocondrodisplasias/genética , Polirribossomos/metabolismo , Doenças da Imunodeficiência Primária/genética , RNA Nuclear Pequeno/antagonistas & inibidores , Doenças Retinianas/genética , Fatores de Transcrição/metabolismo
2.
J Genet Eng Biotechnol ; 20(1): 123, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976537

RESUMO

BACKGROUND/AIM: Human dental pulp-derived mesenchymal stem cells (hDP-MSCs) are a promising source of progenitor cells for bone tissue engineering. Nanocomposites made of calcium phosphate especially hydroxyapatite (HA) offer an impressive solution for orthopedic and dental implants. The combination of hDP-MSCs and ceramic nanocomposites has a promising therapeutic potential in regenerative medicine. Despite the calcium phosphate hydroxyapatite (HA)-based nanocomposites offer a good solution for orthopedic and dental implants, the heavy load-bearing clinical applications require higher mechanical strength, which is not of the HA' properties that have low mechanical strength. Herein, the outcomes of using fabricated ceramic nanocomposites of hydroxyapatite/titania/calcium silicate mixed at different ratios (C1, C2, and C3) and impregnated with hDP-MSCs both in in vitro cultures and rabbit model of induced tibial bone defect were investigated. Our aim is to find out a new approach that would largely enhance the osteogenic differentiation of hDP-MSCs and has a therapeutic potential in bone regeneration. SUBJECTS AND METHODS: Human DP-MSCs were isolated from the dental pulp of the third molar and cultured in vitro. Alizarin Red staining was performed at different time points to assess the osteogenic differentiation. Flow cytometer was used to quantify the expression of hDP-MSCs unique surface markers. Rabbits were used as animal models to evaluate the therapeutic potential of osteogenically differentiated hDP-MSCs impregnated with ceramic nanocomposites of hydroxyapatite/tatiana/calcium silicate (C1, C2, and C3). Histopathological examination and scanning electron microscopy (SEM) were performed to evaluate bone healing potential in the rabbit induced tibial defects three weeks post-transplantation. RESULTS: The hDP-MSCs showed high proliferative and osteogenic potential in vitro culture. Their osteogenic differentiation was accelerated by the ceramic nanocomposites' scaffold and revealed bone defect's healing in transplanted rabbit groups compared to control groups. Histopathological and SEM analysis of the transplanted hDP-MSCs/ceramic nanocomposites showed the formation of new bone filling in the defect area 3 weeks post-implantation. Accelerate osseointegration and enhancement of the bone-bonding ability of the prepared nanocomposites were also confirmed by SEM. CONCLUSIONS: The results strongly suggested that ceramic nanocomposites of hydroxyapatite/ titania /calcium silicate (C1, C2, and C3) associated with hDP-MSCs have a therapeutic potential in bone healing in a rabbit model. Hence, the combined osteogenic system presented here is recommended for application in bone tissue engineering and regenerative medicine.

3.
Pediatr Neurol ; 50(2): 140-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24315536

RESUMO

BACKGROUND: Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare and genetically heterogeneous cerebral white matter disease. Clinically, it is characterized by macrocephaly, developmental delay, and seizures. We explore the clinical spectrum, neuroimaging characteristics, and gene involvement in the first patients with megalencephalic leukoencephalopathy with subcortical cysts described from Egypt. PATIENTS: Six patients were enrolled from three unrelated families. Patient inclusion criteria were macrocephaly, developmental delay, normal urinary organic acids, and brain imaging of diffuse cerebral white matter involvement. Direct sequencing of the MLC1 gene in patients' families and GliaCAM in one questionable case was performed using BigDye Terminator cycle sequencing. RESULTS: Clinical heterogeneity, both intra- and interfamilial, was clearly evident. Developmental delays ranged from globally severe or moderate to mild delay in achieving walking or speech. Head circumference above the ninety-seventh percentile was a constant feature. Neuroimaging featured variability in white matter involvement and subcortical cysts. However, findings of posterior fossa changes and brain stem atrophy were frequently (66.6%) identified in these Egyptian patients. Discrepancy between severe brain involvement and normal mental functions was evident, particularly in patients from the third family. MLC1 mutations were confirmed in all patients. Deletion/insertion mutation in exon 11 (c.908-918delinsGCA, p.Val303 Gly fsX96) was recurrent in two families, whereas a missense mutation in exon 10 (c.880 C > T, p.Pro294Ser) was identified in the third family. CONCLUSIONS: This report extends our knowledge of the clinical and neuroimaging features of megalencephalic leukoencephalopathy with subcortical cysts. It confirms the apparent lack of selective disadvantage of MLC1 mutations on gamete conception and transmission as supported by the presence of multiple affected siblings in Egyptian families.


Assuntos
Cistos/patologia , Cistos/fisiopatologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/fisiopatologia , Proteínas de Membrana/genética , Adolescente , Sequência de Aminoácidos , Encéfalo/patologia , Criança , Pré-Escolar , Cistos/genética , Deficiências do Desenvolvimento/etiologia , Egito , Família , Cabeça/patologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Masculino , Dados de Sequência Molecular , Mutagênese Insercional , Mutação de Sentido Incorreto , Tamanho do Órgão , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA