Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Phys Rev Lett ; 119(25): 253903, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29303338

RESUMO

Many reports on stimulated Raman scattering in mixtures of Raman-active and noble gases indicate that the addition of a dispersive buffer gas increases the phase mismatch to higher-order Stokes and anti-Stokes sidebands, resulting in a preferential conversion to the first few Stokes lines, accompanied by a significant reduction in the Raman gain due to collisions with gas molecules. Here we report that, provided the dispersion can be precisely controlled, the effective Raman gain in a gas-filled hollow-core photonic crystal fiber can actually be significantly enhanced when a buffer gas is added. This counterintuitive behavior occurs when the nonlinear coupling between the interacting fields is strong and can result in a performance similar to that of a pure Raman-active gas, but at a much lower total gas pressure, allowing competing effects such as Raman backscattering to be suppressed. We report high modal purity in all the emitted sidebands, along with anti-Stokes conversion efficiencies as high as 5% in the visible and 2% in the ultraviolet. This new class of gas-based waveguide device, which allows the nonlinear optical response to be beneficially pressure-tuned by the addition of buffer gases, may find important applications in laser science and spectroscopy.

2.
Opt Lett ; 41(12): 2811-4, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27304295

RESUMO

We report on the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagomé-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular modulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the "fiber + gas" system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-order fiber modes. The results pave the way toward tunable fiber-based sources of deep and vacuum ultraviolet light for applications in, e.g., spectroscopy and biomedicine.

3.
Nanotechnology ; 27(43): 435703, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27658641

RESUMO

Spherical silver nanoparticles (NPs) of 30 nm diameter embedded in soda-lime glass were uniformly reshaped (elongated) after irradiation by a linearly polarised 250 fs pulsed laser operating within the NPs' surface plasmon resonance band. We observed second harmonic generation (SHG) and multiphoton-absorption-induced luminescence (MAIL) in the embedded laser-reshaped NPs upon picosecond (10 ps) pulsed laser excitation at 1064 nm. A complementary study of SHG and MAIL was conducted in soda-lime glass containing embedded, mechanically-reshaped silver NPs of a similar elongation ratio (aspect ratio) to the laser-reshaped NPs. This supports the notion that the observed difference in SHG and MAIL in the studied nanocomposite systems is due to the shape modification mechanism. The discrete dipole approximation method was used to assess the absorption and scattering cross-sections of the reshaped NPs with different elongation ratios.

4.
Opt Lett ; 40(6): 1026-9, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25768173

RESUMO

A noise-seeded transient comb of Raman sidebands spanning three octaves from 180 to 2400 nm, is generated by pumping a hydrogen-filled hollow-core photonic crystal fiber with 26-µJ, 300-fs pulses at 800 nm. The pump pulses are spectrally broadened by both Kerr and Raman-related self-phase modulation (SPM), and the broadening is then transferred to the Raman lines. In spite of the high intensity, and in contrast to bulk gas-cell based experiments, neither SPM broadening nor ionization are detrimental to comb formation.

5.
Opt Lett ; 40(7): 1238-41, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25831302

RESUMO

Compression of 250-fs, 1-µJ pulses from a KLM Yb:YAG thin-disk oscillator down to 9.1 fs is demonstrated. A kagomé-PCF with a 36-µm core-diameter is used with a pressure gradient from 0 to 40 bar of krypton. Compression to 22 fs is achieved by 1200 fs2 group-delay-dispersion provided by chirped mirrors. By coupling the output into a second kagomé-PCF with a pressure gradient from 0 to 25 bar of argon, octave spanning spectral broadening via the soliton-effect is observed at 18-W average output power. Self-compression to 9.1 fs is measured, with compressibility to 5 fs predicted. Also observed is strong emission in the visible via dispersive wave generation, amounting to 4% of the total output power.

6.
Opt Express ; 22(17): 20566-73, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25321261

RESUMO

We report on the efficient, tunable, and selective frequency up-conversion of a supercontinuum spectrum via molecular modulation in a hydrogen-filled hollow-core photonic crystal fiber. The vibrational Q(1) Raman transition of hydrogen is excited in the fiber by a pump pre-pulse, enabling the excitation of a synchronous, collective oscillation of the molecules. This coherence wave is then used to up-shift the frequency of an arbitrarily weak, delayed probe pulse. Perfect phase-matching for this process is achieved by using higher order fiber modes and adjusting the pressure of the filling gas. Conversion efficiencies of ~50% are obtained within a tuning range of 25 THz.

7.
Opt Express ; 21(24): 29711-8, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24514522

RESUMO

A strong anti-Stokes Raman signal, from the vibrational Q(1) transition of hydrogen, is generated in gas-filled hollow-core photonic crystal fiber. To be efficient, this process requires phase-matching, which is not automatically provided since the group velocity dispersion is typically non-zero and--inside a fiber--cannot be compensated for using a crossed-beam geometry. Phase-matching can however be arranged by exploiting the different dispersion profiles of higher-order modes. We demonstrate the generation of first and second anti-Stokes signals in higher-order modes by pumping with an appropriate mixture of fundamental and a higher-order modes, synthesized using a spatial light modulator. Conversion efficiencies as high as 5.3% are achieved from the pump to the first anti-Stokes band.

8.
Opt Lett ; 38(5): 600-2, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23455236

RESUMO

We report a method for amplifying higher-order guided modes, synthesized with a spatial light modulator, in a hydrogen-filled hollow-core photonic crystal fiber. The gain mechanism is intermodal stimulated Raman scattering, a pump laser source in the fundamental mode providing amplification for weak higher-order seed modes at the Stokes frequency. The gain for higher-order modes up to LP31 is calculated and verified experimentally.

9.
Opt Lett ; 38(18): 3592-5, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24104822

RESUMO

We demonstrate temporal pulse compression in gas-filled kagomé hollow-core photonic crystal fiber (PCF) using two different approaches: fiber-mirror compression based on self-phase modulation under normal dispersion, and soliton effect self-compression under anomalous dispersion with a decreasing pressure gradient. In the first, efficient compression to near-transform-limited pulses from 103 to 10.6 fs was achieved at output energies of 10.3 µJ. In the second, compression from 24 to 6.8 fs was achieved at output energies of 6.6 µJ, also with near-transform-limited pulse shapes. The results illustrate the potential of kagomé-PCF for postprocessing the output of fiber lasers. We also show that, using a negative pressure gradient, ultrashort pulses can be delivered directly into vacuum.

10.
Opt Lett ; 37(21): 4362-4, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23114296

RESUMO

In a relatively simple setup consisting of a microchip laser as pump source and two hydrogen-filled hollow-core photonic crystal fibers, a broad, phase-locked, purely rotational frequency comb is generated. This is achieved by producing a clean first Stokes seed pulse in a narrowband guiding photonic bandgap fiber via stimulated Raman scattering and then driving the same Raman transition resonantly with a pump and Stokes fields in a second broadband guiding kagomé-style fiber. Using a spectral interferometric technique based on sum frequency generation, we show that the comb components are phase locked.

11.
Opt Express ; 19(16): 15438-44, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21934907

RESUMO

We demonstrate the first soft-glass hollow core photonic crystal fiber. The fiber is made from a high-index lead-silicate glass (Schott SF6, refractive index 1.82 at 500 nm). Fabricated by the stack-and-draw technique, the fiber incorporates a 7-cell hollow core embedded in a highly uniform 6-layer cladding structure that resembles a kagomé-like lattice. Effective single mode guidance of light is observed from 750 to 1050 nm in a large mode area (core diameter ~30 µm) with a low loss of 0.74 dB/m. The underlying guidance mechanism of the fiber is investigated using finite element modeling. The fiber is promising for applications requiring single mode guidance in a large mode area, such as particle guidance, fluid and gas filled devices.

12.
Phys Rev Lett ; 105(17): 173902, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-21231047

RESUMO

A unique characteristic of transient stimulated Raman scattering, in which the spatiotemporal evolution of the fields and the molecular excitation follow a universal self-similarity law, is observed in gas-filled photonic crystal fibers. As the input laser power is increased, the coupled system "optical fields + molecular excitation" goes through the same phases of time evolution but at a higher rate. Using the self-similarity law we are able to completely reconstruct the evolution of the pump and Stokes fields from one measurement.

13.
Sci Rep ; 10(1): 250, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937857

RESUMO

The influence of microgeometries on the Secondary Electron Yield (SEY) of surfaces is investigated. Laser written structures of different aspect ratio (height to width) on a copper surface tuned the SEY of the surface and reduced its value to less than unity. The aspect ratio of microstructures was methodically controlled by varying the laser parameters. The results obtained corroborate a recent theoretical model of SEY reduction as a function of the aspect ratio of microstructures. Nanostructures - which are formed inside the microstructures during the interaction with the laser beam - provided further reduction in SEY comparable to that obtained in the simulation of structures which were coated with an absorptive layer suppressing secondary electron emission.

14.
Phys Rev Lett ; 103(18): 183902, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19905807

RESUMO

Using a hydrogen-filled hollow-core photonic crystal fiber as a nonlinear optical gas cell, we study amplification of ns-laser pulses by backward rotational Raman scattering. We find that the amplification process has two characteristic stages. Initially, the pulse energy grows and its duration shortens due to gain saturation at the trailing edge of the pulse. This phase is followed by formation of a symmetric pulse with a duration significantly shorter than the phase relaxation time of the Raman transition. Stabilization of the Stokes pulse profile to a solitonlike hyperbolic secant shape occurs as a result of nonlinear amplification at its front edge and nonlinear absorption at its trailing edge (caused by energy conversion back to the pump field), leading to a reshaped pulse envelope that travels at superluminal velocity.

15.
Opt Express ; 16(22): 17972-81, 2008 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-18958077

RESUMO

We present a versatile method for selective mode coupling into higher-order modes of photonic crystal fibers, using holograms electronically generated by a spatial light modulator. The method enables non-mechanical and completely repeatable changes in the coupling conditions. We have excited higher order modes up to LP(31) in hollow-core photonic crystal fibers. The reproducibility of the coupling allows direct comparison of the losses of different guided modes in both hollow-core bandgap and kagome-lattice photonic crystal fibers. Our results are also relevant to applications in which the intensity distribution of the light inside the fiber is important, such as particle- or atom-guidance.

16.
Nanoscale ; 7(32): 13537-46, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26204243

RESUMO

In order to enable exploitation of noble metal/poly(vinyl-alcohol) nanocomposites for device fabrication, solutions of poly(vinyl-alcohol) suitable for piezo-driven inkjet printing techniques are identified and discussed in terms of their material properties. The printable poly(vinyl-alcohol) medium is then exploited as a host material through the formation of silver or gold nanoparticles in order to create nanocomposites that exhibit a surface plasmon resonance behaviour associated with the small metallic inclusions. To mitigate some of the material redistribution effects associated with the drying of printed droplets containing finely divided materials, the metallic nanoparticles are formed after the printing and drying process is completed, by way of an in situ reduction of an appropriate metal salt by the poly(vinyl-alcohol)-host matrix itself, which takes place at modest temperatures compatible with most substrate materials. An obvious application for such nanocomposites is in optical elements whereby the surface plasmon resonance associated with the metal is the functional aspect of devices such as sensors or active optical elements. High Resolution Transmission Electron Microscopy was used to examine the dimensions, distribution, morphology and crystal structure of the silver and gold nanoparticles in detail allowing discussion of their suitability for these applications and what further optimisation may be necessary to adequately control their formation.

17.
Opt Lett ; 25(9): 616-8, 2000 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18064128

RESUMO

We report on the laser performance of a diode-pumped Yb:KGd(WO(4))(2) laser that is passively Q switched with a Cr(4+):YAG saturable absorber. Raman conversion of fundamental laser emission in the laser crystal was demonstrated. Q-switched 3.4-mu;J pulses with a pulse width of 85 ns were obtained at the 1033-nm fundamental wavelength and 0.4-mu;J pulses with a pulse width of 20 ns were produced in a first Stokes at 1139 nm.

18.
Opt Lett ; 25(15): 1119-21, 2000 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18064290

RESUMO

We demonstrate what is to our knowledge the first mode-locked Yb:KGd(WO(4))(2) laser. Using a semiconductor saturable-absorber mirror for passive mode locking, we obtain pulses of 176-fs duration with an average power of 1.1 W and a peak power of 64 kW at a center wavelength of 1037 nm. We achieve pulses as short as 112 fs at a lower output power. The laser is based on a standard delta cavity and pumped by two high-brightness laser diodes, making the whole system very simple and compact. Tuning the laser by means of a knife-edge results in mode-locked pulses within a wavelength range from 1032 to 1054 nm. In cw operation, we achieve output powers as high as 1.3 W.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA