RESUMO
Apolipoprotein ε allele 4 (APOE4) influences the metabolism of polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA). The entorhinal cortex (EC) in the brain is affected early in Alzheimer's disease and is rich in DHA. The purpose of this study is to identify the effect of APOE4 and DHA lipid species on the EC. Plasma and cerebrospinal fluid (CSF) lipidomic measurements were obtained from the DHA Brain Delivery Pilot, a randomized clinical trial of DHA supplementation (n = 10) versus placebo (n = 12) for six months in nondemented older adults stratified by APOE4 status. Wild-type C57B6/J mice were fed a high or low DHA diet for 6 months followed by plasma and brain lipidomic analysis. Levels of phosphatidylcholine DHA (PC 38:6) and cholesterol ester DHA (CE 22:6) had the largest increases in CSF following supplementation (P < 0.001). DHA within triglyceride (TG) lipids in CSF strongly correlated with corresponding plasma TG lipids, and differed by APOE4, with carriers having a lower increase than noncarriers. Changes in plasma PC DHA had the strongest association with changes in EC thickness in millimeters, independent of APOE4 status (P = 0.007). In mice, a high DHA diet increased PUFAs within brain lipids. Our findings demonstrate an exchange of DHA at the CSF-blood barrier and into the brain within all lipid species with APOE having the strongest effect on DHA-containing TGs. The correlation of PC DHA with EC suggests a functional consequence of DHA accretion in high density lipoprotein for the brain.
Assuntos
Apolipoproteína E4 , Ácidos Docosa-Hexaenoicos , Animais , Camundongos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Dieta , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/metabolismo , Córtex Entorrinal/metabolismo , Ácidos Graxos InsaturadosRESUMO
BACKGROUND: Nearly 250,000 veterans from the 1990-1991 Gulf War have Gulf War Illness (GWI), a condition with heterogeneous pathobiology that remains difficult to diagnose. As such, availability of blood biomarkers that reflect the underlying biology of GWI would help clinicians provide appropriate care to ill veterans. In this study, we measured blood lipids to examine the influence of sex on the association between blood lipids and GWI diagnosis. METHODS: Plasma lipid extracts from GWI (n = 100) and control (n = 45) participants were subjected to reversed-phase nano-flow liquid chromatography-mass spectrometry analysis. RESULTS: An influence of sex and GWI case status on plasma neutral lipid and phospholipid species was observed. Among male participants, triglycerides, diglycerides, and phosphatidylcholines were increased while cholesterol esters were decreased in GWI cases compared to controls. In female participants, ceramides were increased in GWI cases compared to controls. Among male participants, unsaturated triglycerides, phosphatidylcholine and diglycerides were increased while unsaturated cholesterol esters were lower in GWI cases compared to controls. The ratio of arachidonic acid- to docosahexaenoic acid-containing triglyceride species was increased in female and male GWI cases as compared to their sex-matched controls. CONCLUSION: Differential modulation of neutral lipids and ratios of arachidonic acid to docosahexaenoic acid in male veterans with GWI suggest metabolic dysfunction and inflammation. Increases in ceramides among female veterans with GWI also suggest activation of inflammatory pathways. Future research should characterize how these lipids and their associated pathways relate to GWI pathology to identify biomarkers of the disorder.
Assuntos
Síndrome do Golfo Pérsico , Veteranos , Biomarcadores , Feminino , Guerra do Golfo , Humanos , Masculino , Síndrome do Golfo Pérsico/diagnóstico , Síndrome do Golfo Pérsico/metabolismo , FosfolipídeosRESUMO
Disturbances in the brain's capacity to meet its energy demand increase the risk of synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic interventions that target metabolic pathways combined with diagnostics to identify deficits in cerebral bioenergetics may therefore offer novel therapeutic potential for Alzheimer's disease (AD) prevention and management. Many diet-derived natural bioactive components can govern cellular energy metabolism but their effects on brain aging are not clear. This review examines how nutritional metabolism can regulate brain bioenergetics and mitigate AD risk. We focus on leading mechanisms of cerebral bioenergetic breakdown in the aging brain at the cellular level, as well as the putative causes and consequences of disturbed bioenergetics, particularly at the blood-brain barrier with implications for nutrient brain delivery and nutritional interventions. Novel therapeutic nutrition approaches including diet patterns are provided, integrating studies of the gut microbiome, neuroimaging, and other biomarkers to guide future personalized nutritional interventions.
RESUMO
BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex illness which disproportionally affects females. This illness is associated with immune and metabolic perturbations that may be influenced by lipid metabolism. We therefore hypothesized that plasma lipids from ME/CFS patients will provide a unique biomarker signature of disturbances in immune, inflammation and metabolic processes associated with ME/CFS. METHODS: Lipidomic analyses were performed on plasma from a cohort of 50 ME/CFS patients and 50 controls (50% males and similar age and ethnicity per group). Analyses were conducted with nano-flow liquid chromatography (nLC) and high-performance liquid chromatography (HPLC) systems coupled with a high mass accuracy ORBITRAP mass spectrometer, allowing detection of plasma lipid concentration ranges over three orders of magnitude. We examined plasma phospholipids (PL), neutral lipids (NL) and bioactive lipids in ME/CFS patients and controls and examined the influence of sex on the relationship between lipids and ME/CFS diagnosis. RESULTS: Among females, levels of total phosphatidylethanolamine (PE), omega-6 arachidonic acid-containing PE, and total hexosylceramides (HexCer) were significantly decreased in ME/CFS compared to controls. In males, levels of total HexCer, monounsaturated PE, phosphatidylinositol (PI), and saturated triglycerides (TG) were increased in ME/CFS patients compared to controls. Additionally, omega-6 linoleic acid-derived oxylipins were significantly increased in male ME/CFS patients versus male controls. Principal component analysis (PCA) identified three major components containing mostly PC and a few PE, PI and SM species-all of which were negatively associated with headache and fatigue severity, irrespective of sex. Correlations of oxylipins, ethanolamides and ME/CFS symptom severity showed that lower concentrations of these lipids corresponded with an increase in the severity of headaches, fatigue and cognitive difficulties and that this association was influenced by sex. CONCLUSION: The observed sex-specific pattern of dysregulated PL, NL, HexCer and oxylipins in ME/CFS patients suggests a possible role of these lipids in promoting immune dysfunction and inflammation which may be among the underlying factors driving the clinical presentation of fatigue, chronic pain, and cognitive difficulties in ill patients. Further evaluation of lipid metabolism pathways is warranted to better understand ME/CFS pathogenesis.
Assuntos
Síndrome de Fadiga Crônica , Biomarcadores , Cognição , Feminino , Humanos , Inflamação , Masculino , DorRESUMO
BACKGROUND: Matrix metallopeptidase 9 (MMP9) has been implicated in a variety of neurological disorders, including Alzheimer's disease (AD), where MMP9 levels are elevated in the brain and cerebrovasculature. Previously our group demonstrated apolipoprotein E4 (apoE4) was less efficient in regulating MMP9 activity in the brain than other apoE isoforms, and that MMP9 inhibition facilitated beta-amyloid (Aß) elimination across the blood-brain barrier (BBB) METHODS: In the current studies, we evaluated the impact of MMP9 modulation on Aß disposition and neurobehavior in AD using two approaches, (1) pharmacological inhibition of MMP9 with SB-3CT in apoE4 x AD (E4FAD) mice, and (2) gene deletion of MMP9 in AD mice (MMP9KO/5xFAD) RESULTS: Treatment with the MMP9 inhibitor SB-3CT in E4FAD mice led to reduced anxiety compared to placebo using the elevated plus maze. Deletion of the MMP9 gene in 5xFAD mice also reduced anxiety using the open field test, in addition to improving sociability and social recognition memory, particularly in male mice, as assessed through the three-chamber task, indicating certain behavioral alterations in AD may be mediated by MMP9. However, neither pharmacological inhibition of MMP9 or gene deletion of MMP9 affected spatial learning or memory in the AD animals, as determined through the radial arm water maze. Moreover, the effect of MMP9 modulation on AD neurobehavior was not due to changes in Aß disposition, as both brain and plasma Aß levels were unchanged in the SB-3CT-treated E4FAD animals and MMP9KO/AD mice compared to their respective controls. CONCLUSIONS: In total, while MMP9 inhibition did improve specific neurobehavioral deficits associated with AD, such as anxiety and social recognition memory, modulation of MMP9 did not alter spatial learning and memory or Aß tissue levels in AD animals. While targeting MMP9 may represent a therapeutic strategy to mitigate aspects of neurobehavioral decline in AD, further work is necessary to understand the nature of the relationship between MMP9 activity and neurological dysfunction.
Assuntos
Doença de Alzheimer/metabolismo , Ansiedade/metabolismo , Metaloproteinase 9 da Matriz/deficiência , Interação Social , Aprendizagem Espacial/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/genética , Animais , Ansiedade/tratamento farmacológico , Ansiedade/genética , Ansiedade/psicologia , Encéfalo/metabolismo , Feminino , Compostos Heterocíclicos com 1 Anel/farmacologia , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Presenilina-1/genética , Interação Social/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Sulfonas/farmacologia , Sulfonas/uso terapêuticoRESUMO
Gulf War Illness (GWI), affecting 30% of veterans from the 1991 Gulf War (GW), is a multi-symptom illness with features similar to those of patients with autoimmune diseases. The objective of the current work is to determine if exposure to GW-related pesticides, such as permethrin (PER), activates peripheral and central nervous system (CNS) adaptive immune responses. In the current study, we focused on a PER metabolite, 3-phenoxybenzoic acid (3-PBA), as this is a common metabolite previously shown to form adducts with endogenous proteins. We observed the presence of 3-PBA and 3-PBA modified lysine of protein peptides in the brain, blood and liver of pyridostigmine bromide (PB)â¯and â¯PER (PB+PER) exposed mice at acute and chronic post-exposure timepoints. We tested whether 3-PBA-haptenated albumin (3-PBA-albumin) can activate immune cells since it is known that chemically haptenated proteins can stimulate immune responses. We detected autoantibodies against 3-PBA-albumin in plasma from PBâ¯+â¯PER exposed mice and veterans with GWI at chronic post-exposure timepoints. We also observed that in vitro treatment of blood with 3-PBA-albumin resulted in the activation of B- and T-helper lymphocytes and that these immune cells were also increased in blood of PBâ¯+â¯PER exposed mice and veterans with GWI. These immune changes corresponded with elevated levels of infiltrating monocytes in the brain and blood of PBâ¯+â¯PER exposed mice which coincided with alterations in the markers of blood-brain barrier disruption, brain macrophages and neuroinflammation. These studies suggest that pesticide exposure associated with GWI may have resulted in the activation of the peripheral and CNS adaptive immune responses, possibly contributing to an autoimmune-type phenotype in veterans with GWI.
Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Permetrina/efeitos adversos , Síndrome do Golfo Pérsico/metabolismo , Adulto , Animais , Benzoatos/análise , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Feminino , Guerra do Golfo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Permetrina/metabolismo , Síndrome do Golfo Pérsico/fisiopatologia , Brometo de Piridostigmina/efeitos adversos , Brometo de Piridostigmina/metabolismo , VeteranosRESUMO
OBJECTIVE: Detection of Alzheimer's disease (AD) prior to clinical inception will be paramount for introducing disease modifying treatments. We have begun collecting baseline characteristics of a community cohort for longitudinal assessment and testing of antecedent blood-based biomarkers. We describe the baseline visit from the first 131 subjects in relationship to a commonly described cytokine, interleukin 6 (IL-6). METHODS: Subjects from the community presented for a free memory screening with varying degrees of memory concern. We quantified the baseline plasma levels of the cytokine IL-6 and assessed cognition (Montreal Cognitive Assessment, MoCA) and mood (Geriatric Depression Scale, GDS) in relationship to their memory concern. RESULTS: Baseline MoCA scores were inversely related to age, and this association was influenced by an AD risk factor, Apolipoprotein E (APOE4) carrier status. The degree of subjective cognitive decline correlated with GDS and was inversely related to MoCA scores. Interleukin 6 levels were related to age, body mass index, and years of education. CONCLUSIONS: It will be important to assess how these baseline IL-6 levels and forthcoming novel biomarkers relate to future cognitive decline. Copyright © 2017 John Wiley & Sons, Ltd.
Assuntos
Doença de Alzheimer/sangue , Disfunção Cognitiva/sangue , Interleucina-6/sangue , Afeto/fisiologia , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas E/análise , Biomarcadores/sangue , Disfunção Cognitiva/diagnóstico , Estudos de Coortes , Feminino , Avaliação Geriátrica/métodos , Humanos , Estudos Longitudinais , Masculino , Memória/fisiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Escalas de Graduação PsiquiátricaRESUMO
Identified in 1993, APOE4 is the greatest genetic risk factor for sporadic Alzheimer's disease (AD), increasing risk up to 15-fold compared with APOE3, with APOE2 decreasing AD risk. However, the functional effects of APOE4 on AD pathology remain unclear and, in some cases, controversial. In vivo progress to understand how the human (h)-APOE genotypes affect AD pathology has been limited by the lack of a tractable familial AD-transgenic (FAD-Tg) mouse model expressing h-APOE rather than mouse (m)-APOE. The disparity between m- and h-apoE is relevant for virtually every AD-relevant pathway, including amyloid-ß (Aß) deposition and clearance, neuroinflammation, tau pathology, neural plasticity and cerebrovascular deficits. EFAD mice were designed as a temporally useful preclinical FAD-Tg-mouse model expressing the h-APOE genotypes for identifying mechanisms underlying APOE-modulated symptoms of AD pathology. From their first description in 2012, EFAD mice have enabled critical basic and therapeutic research. Here we review insights gleaned from the EFAD mice and summarize future directions.
Assuntos
Doença de Alzheimer , Apolipoproteína E4/genética , Modelos Animais de Doenças , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Animais , Apolipoproteína E4/sangue , Humanos , Camundongos , Camundongos Transgênicos , FenótipoRESUMO
As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950-Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra- and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium. While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement.
Assuntos
Benchmarking , Ensaio de Proficiência Laboratorial/estatística & dados numéricos , Lipídeos/sangue , Humanos , Cooperação Internacional , Metabolismo dos Lipídeos/fisiologia , Lipídeos/normas , Variações Dependentes do Observador , Padrões de Referência , Reprodutibilidade dos TestesRESUMO
Phospholipid (PL) abnormalities are observed in the cerebrospinal fluid of patients with traumatic brain injury (TBI), suggesting their role in TBI pathology. Therefore, PL levels were examined in a TBI mouse model that received 1.8 mm deep controlled cortical impact injury or craniectomy only (control). The rotarod and Barnes maze acquisition and probe tests were performed within 2 wk after injury, with another probe test performed 3 mo postinjury. Liquid chromatography/mass spectrometry analyses were performed on lipid extracts from several brain regions and plasma from injured and control mice collected at 3 mo postinjury. Compared to controls, injured mice with sensorimotor and learning deficits had decreased levels of cortical and cerebellar phosphatidylcholine (PC) and phosphatidylethanolamine (PE) levels, while hippocampal PC, sphingomyelin and PE levels were elevated. Ether PE levels were lower in the cortices and plasma of injured animals. Polyunsaturated fatty acid-containing PC and PE species, particularly ratios of docosahexaenoic acid (DHA) to arachidonic acid, were lower in the hippocampi and cortices and plasma of injured mice. Given the importance of DHA in maintaining neuronal function and resolving inflammation and of peroxisomes in synthesis of ether PLs, normalizing these PLs may be a useful strategy for treating the chronic pathology of TBI.
Assuntos
Lesões Encefálicas/metabolismo , Lipídeos/análise , Fosfolipídeos/metabolismo , Animais , Estudos de Casos e Controles , Hipocampo/metabolismo , Lipídeos/classificação , Aprendizagem em Labirinto , Camundongos , Teste de Desempenho do Rota-RodRESUMO
Gulf War illness (GWI) is a currently untreatable multi-symptom disorder experienced by 1990-1991 Persian Gulf War (GW) veterans. The characteristic hallmarks of GWI include cognitive dysfunction, tremors, migraine, and psychological disturbances such as depression and anxiety. Meta-analyses of epidemiological studies have consistently linked these symptomatic profiles to the combined exposure of GW agents such as organophosphate-based and pyrethroid-based pesticides (e.g. chlorpyrifos (CPF) and permethrin (PER) respectively) and the prophylactic use of pyridostigmine bromide (PB) as a treatment against neurotoxins. Due to the multi-symptomatic presentation of this illness and the lack of available autopsy tissue from GWI patients, very little is currently known about the distinct early pathological profile implicated in GWI (including its influence on synaptic function and aspects of neurogenesis). In this study, we used preclinical models of GW agent exposure to investigate whether 6-month-old mice exposed to CPF alone, or a combined dose of CPF, PB and PER daily for 10 days, demonstrate any notable pathological changes in hippocampal, cortical (motor, piriform) or amygdalar morphometry. We report that at an acute post-exposure time point (after 3 days), both exposures resulted in the impairment of synaptic integrity (reducing synaptophysin levels) in the CA3 hippocampal region and altered neuronal differentiation in the dentate gyrus (DG), demonstrated by a significant reduction in doublecortin positive cells. Both exposures also significantly increased astrocytic GFAP immunoreactivity in the piriform cortex, motor cortex and the basolateral amygdala and this was accompanied by an increase in (basal) brain acetylcholine (ACh) levels. There was no evidence of microglial activation or structural deterioration of principal neurons in these regions following exposure to CPF alone or in combination with PB and PER. Evidence of subtle microvascular injury was demonstrated by the reduction of platelet endothelial cell adhesion molecule (PECAM)-1 levels in CPF+PB+PER exposed group compared to control. These data support early (subtle) neurotoxic effects on the brain following exposure to GW agents.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Substâncias para a Guerra Química/toxicidade , Guerra do Golfo , Inseticidas/toxicidade , Neurônios/efeitos dos fármacos , Organofosfatos/toxicidade , Síndrome do Golfo Pérsico/patologia , Sinapses/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Capilares/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BLRESUMO
OBJECTIVES: It has been shown that peripheral measures of brain-derived neurotrophic factor (BNDF), an important neurotrophin instrumental to the biology of learning, may contribute to predicting cognitive decline. However, the two primary forms of BDNF, mature (mBDNF) and pro (proBDNF), and how they contribute to cognition longitudinally has not been well studied. METHODS: Eighty-two older adults (average age 72.2 ± 6.4 years) provided blood samples at two time points separated on average by 4.2 years while participating in an annual memory screening that included the MoCA (Montreal Cognitive Assessment) and GDS (Geriatric Depression Scale). Both mBDNF and proBDNF from serum were quantified at each time point. Whole blood samples were genotyped for APOE and BDNF Val66Met. RESULTS: Using logistic regression analysis controlling for age, sex, baseline MoCA score, APOE, and BDNF, higher baseline mBDNF was associated with subjects whose screening score was near maximum or maximum (as defined by MoCA score of 29 or 30) at the second collection visit. APOE was a significant contributing factor; however, BDNF Val66Met was not. Using a similar logistic regression analysis, baseline proBDNF was not found to be associated with future cognition. DISCUSSION: This study further supports that mBDNF measured in the serum of older adults may reflect a protective role while proBDNF requires further investigation.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Humanos , Idoso , Fator Neurotrófico Derivado do Encéfalo/genética , Vida Independente , Cognição , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/genética , Apolipoproteínas ERESUMO
Objective: Gulf War Illness (GWI) is a debilitating multisymptom condition that affects nearly a third of 1990-91 Gulf War (GW) veterans. Symptoms include pain, fatigue, gastrointestinal issues, and cognitive decrements. Our work has shown that GWI rates and potential causes for symptoms vary between men and women veterans. Studies have documented neuropsychological and neuroimaging findings mostly in men or combined sex datasets. Data are lacking for women veterans due to lack of power and repositories of women veteran samples. Methods: We characterized GW women veterans in terms of demographics, exposures, neuropsychological and neuroimaging outcomes from the newly collated Boston, Biorepository and Integrative Network (BBRAIN) for GWI. Results: BBRAIN women veterans are highly educated with an average age of 54 years. 81% met GWI criteria, 25% met criteria for current PTSD, 78% were white, and 81% served in the Army. Exposure to combined acetylcholinesterase inhibitors (AChEi) including skin pesticides, fogs/sprays and/or pyridostigmine bromide (PB) anti-nerve gas pill exposure resulted in slower processing speed on attentional tasks and a trend for executive impairment compared with non-exposed women. Brain imaging outcomes showed lower gray matter volumes and smaller caudate in exposed women. Conclusions: Although subtle and limited findings were present in this group of women veterans, it suggests that continued follow-up of GW women veterans is warranted. Future research should continue to evaluate differences between men and women in GW veteran samples. The BBRAIN women sub-repository is recruiting and these data are available to the research community for studies of women veterans.
Assuntos
Neuroimagem , Síndrome do Golfo Pérsico , Veteranos , Humanos , Feminino , Pessoa de Meia-Idade , Síndrome do Golfo Pérsico/diagnóstico por imagem , Guerra do Golfo , Adulto , Boston/epidemiologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Testes Neuropsicológicos , Imageamento por Ressonância Magnética , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , IdosoRESUMO
Background and Aim: Bacopa monnieri is an Ayurvedic herb that has been used for multiple conditions, most notably to augment cognition, particularly memory and attention. Multiple mechanisms, including raising brain-derived neurotrophic factor (BDNF), have been proposed and investigated in animal models that require translational studies in humans. Methods: Bacopa was administered in an open-labeled study to cognitively healthy controls over a 3-month period. Cognition and mood were assessed using the Montreal Cognitive Assessment (MoCA) and geriatric depression scale (GDS) at the baseline and 3-month visit. Laboratories were assessed for safety and serum levels of mature (mBDNF) and proBDNF were quantified. In a subset of subjects, intracellular signaling processes were assessed using western blot analysis. Results: Bacopa was provided to 35 subjects and was well-tolerated except for 4 (11%) subjects who early terminated due to known, reversible, and gastrointestinal side effects (i.e., nausea, diarrhea). Over the 3 months, the GDS and the total MoCA did not significantly change; however, the delayed-recall subscale significantly improved (baseline: 3.8 ± 1.2, 3-months: 4.3 ± 0.9; P = 0.032). Serum mBDNF and proBDNF levels did not significantly change. Cyclic AMP response element-binding protein (CREB) phosphorylation significantly increased (P = 0.028) and p65 nuclear factor kappa B (NF-κB) phosphorylation significantly decreased (P = 0.030). Conclusion: These results suggest that Bacopa may exert an anti-inflammatory effect through NF-κB and improve intracellular signaling processes associated with synaptogenesis (CREB). The future placebo-controlled studies are recommended. Relevance for Patients: B. monnieri will require larger, blinded trials to better understand potential mechanisms, interactions, and utilization.
RESUMO
BACKGROUND: The apolipoprotein E (APOE) ε4 allele, involved in fatty acid (FA) metabolism, is a major genetic risk factor for Alzheimer's disease (AD). This study examined the influence of APOE genotypes on blood and brain markers of the L-carnitine system, necessary for fatty acid oxidation (FAO), and their collective influence on the clinical and pathological outcomes of AD. METHODS: L-carnitine, its metabolites γ-butyrobetaine (GBB) and trimethylamine-n-oxide (TMAO), and its esters (acylcarnitines) were analyzed in blood from predominantly White community/clinic-based individuals (n = 372) and in plasma and brain from the Religious Order Study (ROS) (n = 79) using liquid chromatography tandem mass spectrometry (LC-MS/MS). FINDINGS: Relative to total blood acylcarnitines, levels of short chain acylcarnitines (SCAs) were higher whereas long chain acylcarnitines (LCAs) were lower in AD, which was observed pre-clinically in APOE ε4s. Plasma medium chain acylcarnitines (MCAs) were higher amongst cognitively healthy APOE ε2 carriers relative to other genotypes. Compared to their respective controls, elevated TMAO and lower L-carnitine and GBB were associated with AD clinical diagnosis and these differences were detected preclinically among APOE ε4 carriers. Plasma and brain GBB, TMAO, and acylcarnitines were also associated with post-mortem brain amyloid, tau, and cerebrovascular pathologies. INTERPRETATION: Alterations in blood L-carnitine, GBB, TMAO, and acylcarnitines occur early in clinical AD progression and are influenced by APOE genotype. These changes correlate with post-mortem brain AD and cerebrovascular pathologies. Additional studies are required to better understand the role of the FAO disturbances in AD.
Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Humanos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Carnitina/metabolismo , Apolipoproteínas E/genética , Encéfalo , Ácidos GraxosRESUMO
Currently approved blood biomarkers detect intracranial lesions in adult patients with mild to moderate traumatic brain injury (TBI) acutely post-injury. However, blood biomarkers are still needed to help with a differential diagnosis of mild TBI (mTBI) and post-traumatic stress disorder (PTSD) at chronic post-injury time points. Owing to the association between phospholipid (PL) dysfunction and chronic consequences of TBI, we hypothesized that examining bioactive PL metabolites (oxylipins and ethanolamides) would help identify long-term lipid changes associated with mTBI and PTSD. Lipid extracts of plasma from active-duty soldiers deployed to the Iraq/Afghanistan wars (control = 52, mTBI = 21, PTSD = 34, and TBI + PTSD = 13) were subjected to liquid chromatography/mass spectrometry analysis to examine oxylipins and ethanolamides. Linear regression analyses followed by post hoc comparisons were performed to assess the association of these lipids with diagnostic classifications. Significant differences were found in oxylipins derived from arachidonic acid (AA) between controls and mTBI, PTSD, and mTBI + PTSD groups. Levels of AA-derived oxylipins through the cytochrome P450 pathways and anandamide were significantly elevated among mTBI + PTSD patients who were carriers of the apolipoprotein E E4 allele. These studies demonstrate that AA-derived oxylipins and anandamide may be unique blood biomarkers of PTSD and mTBI + PTSD. Further, these AA metabolites may be indicative of an underlying inflammatory process that warrants further investigation. Future validation studies in larger cohorts are required to determine a potential application of this approach in providing a differential diagnosis of mTBI and PTSD in a clinical setting.
RESUMO
BACKGROUND: Evidence suggests that dihydropyridine calcium channel blockers may be useful in preventing and treating Alzheimer's disease (AD). OBJECTIVE: In an open-label trial of safety and tolerability of nilvadipine in patients with AD, we examined cognition and executive function over a short time period to determine an influence of nilvadipine on these outcomes. METHOD: We investigated change in cognition using the Mini mental state examination and in executive function using the EXIT25 in 55 patients with AD who received nilvadipine 8 mg daily for 6 weeks compared with 30 non-treated subjects with AD. Apolipoprotein E genotyping was performed, and the study team and caregivers were kept blinded to APOE ε4 status during the trial. RESULTS: Aside from differences in gender and education, both the treatment and the control groups were similar in general demographics and on baseline cognition status. After correction for potential confounders, APOE ε4 status, and use of other antihypertensive medications, a significant impact of study intervention was observed on MMSE (F = 8.67, p < 0.01) and EXIT (F = 8.77, p < 0.03) scores. An interaction between APOE ε4 carrier status and treatment (p ≤ 0.05) was observed for both outcome measures. CONCLUSION: In this open-label trial, among APOE ε4 non-carriers, we observed stabilization of cognition and improvement in executive function among treated individuals compared with non-treated individuals. Among APOE ε4 carriers, cognitive stabilization was evident for treated individuals whereas a cognitive decline was observed in non-treated individuals. These findings provide additional evidence for potential therapeutic efficacy of nilvadipine in treating AD and warrant further investigation.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Anti-Hipertensivos/uso terapêutico , Apolipoproteína E4/genética , Cognição/efeitos dos fármacos , Nifedipino/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/psicologia , Estudos de Coortes , Função Executiva/efeitos dos fármacos , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Nifedipino/uso terapêuticoRESUMO
With age the apolipoprotein E (APOE) E4 allele (involved in lipid homeostasis) is associated with perturbation of bioenergetics pathways in Alzheimer's disease (AD). We therefore hypothesized that in aging mice APOE genotype would affect the L-carnitine system (central to lipid bioenergetics), in the brain and in the periphery. Using liquid chromatography-mass spectrometry, levels of L-carnitine and associated metabolites: γ-butyrobetaine (GBB), crotonobetaine, as well as acylcarnitines, were evaluated at 10-, 25-, and 50-weeks, in the brain and the periphery, in a targeted replacement mouse model of human APOE (APOE-TR). Aged APOE-TR mice were also orally administered 125 mg/kg of L-carnitine daily for 7 days followed by evaluation of brain, liver, and plasma L-carnitine system metabolites. Compared to E4-TR, an age-dependent increase among E2- and E3-TR mice was detected for medium- and long-chain acylcarnitines (MCA and LCA, respectively) within the cerebrovasculature and brain parenchyma. While following L-carnitine oral challenge, E4-TR mice had higher increases in the L-carnitine metabolites, GBB and crotonobetaine in the brain and a reduction of plasma to brain total acylcarnitine ratios compared to other genotypes. These studies suggest that with aging, the presence of the E4 allele may contribute to alterations in the L-carnitine bioenergetic system and to the generation of L-carnitine metabolites that could have detrimental effects on the vascular system. Collectively the E4 allele and aging may therefore contribute to AD pathogenesis through aging-related lipid bioenergetics as well as cerebrovascular dysfunctions.
RESUMO
BACKGROUND: There is limited data regarding adaptive immunity in older persons with Multiple Sclerosis (MS). OBJECTIVE: The aim of the present study was to quantify adaptive immune cells in younger (age less than 50) and older (age greater than 50) with MS in the context of clinical parameters (EDSS, 25-foot walk, SDMT). Subjects were either Untreated (no MS medications in 6 months), taking Injectables (interferons or glatiramer acetate), or Other approved MS treatments. RESULTS: A total of 72 subjects were enrolled (30 younger and 42 older). Older MS patients that were Untreated or taking Injectables had lower CD8 cell counts. Older MS patients demonstrated increased levels of CD4+CD25hi cells and inflammatory serum cytokines (TNF-α, IL-8). There was suggestion that MS treatments modulated IL-10. Cognition as assessed by SDMT was associated with disease duration and IL-10. CONCLUSION: Components of adaptive immunity are influenced by aging in MS which may also impact aspects of cognition as measured by SDMT.
Assuntos
Esclerose Múltipla , Envelhecimento , Citocinas , Acetato de Glatiramer/uso terapêutico , Humanos , Interleucina-10 , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla/tratamento farmacológicoRESUMO
Chemical and pharmaceutical exposures have been associated with the development of Gulf War Illness (GWI), but how these factors interact with the pathophysiology of traumatic brain injury (TBI) remains an area of study that has received little attention thus far. We studied the effects of pyridostigmine bromide (an anti-nerve agent) and permethrin (a pesticide) exposure in a mouse model of repetitive mild TBI (r-mTBI), with 5 impacts over a 9-day period, followed by Gulf War (GW) toxicant exposure for 10 days beginning 30 days after the last head injury. We then assessed the chronic behavioral and pathological sequelae 5 months after GW agent exposure. We observed that r-mTBI and GWI cumulatively affect the spatial memory of mice in the Barnes maze and result in a shift of search strategies employed by r-mTBI/GW exposed mice. GW exposure also produced anxiety-like behavior in sham animals, but r-mTBI produced disinhibition in both the vehicle and GW treated mice. Pathologically, GW exposure worsened r-mTBI dependent axonal degeneration and neuroinflammation, increased oligodendrocyte cell counts, and increased r-mTBI dependent phosphorylated tau, which was found to colocalize with oligodendrocytes in the corpus callosum. These results suggest that GW exposures may worsen TBI-related deficits. Veterans with a history of both GW chemical exposures as well as TBI may be at higher risk for worse symptoms and outcomes. Subsequent exposure to various toxic substances can influence the chronic nature of mTBI and should be considered as an etiological factor influencing mTBI recovery.