Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Commun ; 199: 87-97, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36531214

RESUMO

COVID-19 data analysis and prediction from patient data repository collected from hospitals and health organizations. Users' credentials and personal information are at risk; it could be an unrecoverable issue worldwide. A Homomorphic identification of possible breaches could be more appropriate for minimizing the risk factors in preventing personal data. Individual user privacy preservation is a must-needed research focus in various fields. Health data generated and collected information from multiple scenarios increasing the complexity involved in maintaining secret patient information. A homomorphic-based systematic approach with a deep learning process could reduce depicts and illegal functionality of unknown organizations trying to have relation to the environment and physical and social relations. This article addresses the homomorphic standard system functionality, which refers to all the functional aspects of deep learning system requirements in COVID-19 health management. Moreover, this paper spotlights the metric privacy incorporation for improving the Deep Learning System (DPLS) approaches for solving the healthcare system's complex issues. It is absorbed from the result analysis Homomorphic-based privacy observation metric gradually improves the effectiveness of the deep learning process in COVID-19-health care management.

2.
Sensors (Basel) ; 18(6)2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29865210

RESUMO

Although wireless sensor networks (WSNs) have been the object of research focus for the past two decades, fault diagnosis in these networks has received little attention. This is an essential requirement for wireless networks, especially in WSNs, because of their ad-hoc nature, deployment requirements and resource limitations. Therefore, in this paper we survey fault diagnosis from the perspective of network operations. To the best of our knowledge, this is the first survey from such a perspective. We survey the proactive, active and passive fault diagnosis schemes that have appeared in the literature to date, accenting their advantages and limitations of each scheme. In addition to illuminating the details of past efforts, this survey also reveals new research challenges and strengthens our understanding of the field of fault diagnosis.

3.
PeerJ Comput Sci ; 10: e2019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983188

RESUMO

With the rapid growth of online property rental and sale platforms, the prevalence of fake real estate listings has become a significant concern. These deceptive listings waste time and effort for buyers and sellers and pose potential risks. Therefore, developing effective methods to distinguish genuine from fake listings is crucial. Accurately identifying fake real estate listings is a critical challenge, and clustering analysis can significantly improve this process. While clustering has been widely used to detect fraud in various fields, its application in the real estate domain has been somewhat limited, primarily focused on auctions and property appraisals. This study aims to fill this gap by using clustering to classify properties into fake and genuine listings based on datasets curated by industry experts. This study developed a K-means model to group properties into clusters, clearly distinguishing between fake and genuine listings. To assure the quality of the training data, data pre-processing procedures were performed on the raw dataset. Several techniques were used to determine the optimal value for each parameter of the K-means model. The clusters are determined using the Silhouette coefficient, the Calinski-Harabasz index, and the Davies-Bouldin index. It was found that the value of cluster 2 is the best and the Camberra technique is the best method when compared to overlapping similarity and Jaccard for distance. The clustering results are assessed using two machine learning algorithms: Random Forest and Decision Tree. The observational results have shown that the optimized K-means significantly improves the accuracy of the Random Forest classification model, boosting it by an impressive 96%. Furthermore, this research demonstrates that clustering helps create a balanced dataset containing fake and genuine clusters. This balanced dataset holds promise for future investigations, particularly for deep learning models that require balanced data to perform optimally. This study presents a practical and effective way to identify fake real estate listings by harnessing the power of clustering analysis, ultimately contributing to a more trustworthy and secure real estate market.

4.
PLoS One ; 14(1): e0208308, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30608936

RESUMO

Optimization of an artificial neural network model through the use of optimization algorithms is the common method employed to search for an optimum solution for a broad variety of real-world problems. One such optimization algorithm is the kidney-inspired algorithm (KA) which has recently been proposed in the literature. The algorithm mimics the four processes performed by the kidneys: filtration, reabsorption, secretion, and excretion. However, a human with reduced kidney function needs to undergo additional treatment to improve kidney performance. In the medical field, the glomerular filtration rate (GFR) test is used to check the health of kidneys. The test estimates the amount of blood that passes through the glomeruli each minute. In this paper, we mimic this kidney function test and the GFR result is used to select a suitable step to add to the basic KA process. This novel imitation is designed for both minimization and maximization problems. In the proposed method, depends on GFR test result which is less than 15 or falls between 15 and 60 or is more than 60 a particular action is performed. These additional processes are applied as required with the aim of improving exploration of the search space and increasing the likelihood of the KA finding the optimum solution. The proposed method is tested on test functions and its results are compared with those of the basic KA. Its performance on benchmark classification and time series prediction problems is also examined and compared with that of other available methods in the literature. In addition, the proposed method is applied to a real-world water quality prediction problem. The statistical analysis of all these applications showed that the proposed method had a ability to improve the optimization outcome.


Assuntos
Algoritmos , Rim/fisiologia , Bases de Dados como Assunto , Taxa de Filtração Glomerular , Fatores de Tempo , Qualidade da Água
5.
PLoS One ; 12(1): e0170372, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28125609

RESUMO

Artificial neural networks (ANNs) have been employed to solve a broad variety of tasks. The selection of an ANN model with appropriate weights is important in achieving accurate results. This paper presents an optimization strategy for ANN model selection based on the cuckoo search (CS) algorithm, which is rooted in the obligate brood parasitic actions of some cuckoo species. In order to enhance the convergence ability of basic CS, some modifications are proposed. The fraction Pa of the n nests replaced by new nests is a fixed parameter in basic CS. As the selection of Pa is a challenging issue and has a direct effect on exploration and therefore on convergence ability, in this work the Pa is set to a maximum value at initialization to achieve more exploration in early iterations and it is decreased during the search to achieve more exploitation in later iterations until it reaches the minimum value in the final iteration. In addition, a novel master-leader-slave multi-population strategy is used where the slaves employ the best fitness function among all slaves, which is selected by the leader under a certain condition. This fitness function is used for subsequent Lévy flights. In each iteration a copy of the best solution of each slave is migrated to the master and then the best solution is found by the master. The method is tested on benchmark classification and time series prediction problems and the statistical analysis proves the ability of the method. This method is also applied to a real-world water quality prediction problem with promising results.


Assuntos
Modelos Teóricos , Redes Neurais de Computação , Qualidade da Água/normas , Algoritmos , Simulação por Computador
6.
Springerplus ; 5(1): 1298, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547672

RESUMO

The natural behaviour of the honeybee has attracted the attention of researchers in recent years and several algorithms have been developed that mimic swarm behaviour to solve optimisation problems. This paper introduces an artificial bee colony (ABC) algorithm for the vehicle routing problem with time windows (VRPTW). A Modified ABC algorithm is proposed to improve the solution quality of the original ABC. The high exploration ability of the ABC slows-down its convergence speed, which may due to the mechanism used by scout bees in replacing abandoned (unimproved) solutions with new ones. In the Modified ABC a list of abandoned solutions is used by the scout bees to memorise the abandoned solutions, then the scout bees select a solution from the list based on roulette wheel selection and replace by a new solution with random routs selected from the best solution. The performance of the Modified ABC is evaluated on Solomon benchmark datasets and compared with the original ABC. The computational results demonstrate that the Modified ABC outperforms the original ABC also produce good solutions when compared with the best-known results in the literature. Computational investigations show that the proposed algorithm is a good and promising approach for the VRPTW.

7.
PLoS One ; 10(7): e0130224, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26132158

RESUMO

This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon's 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results.


Assuntos
Modelos Teóricos , Veículos Automotores/estatística & dados numéricos , Algoritmos , Movimento (Física) , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA