Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biomacromolecules ; 22(6): 2419-2435, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33945268

RESUMO

Inhibition of hen egg white lysozyme (HEWL) and Aß42 fibrillation have been established as the main models for the treatment of systemic lysozyme amyloidosis and Alzheimer's disease (AD), respectively. Several antiamyloidogenic nanomaterials have been developed over the period; however, their intracellular mechanism of action is still not well understood. In this context, plant-based, gold-conjugated, injectable, hydrophilic cellulose nanoonions (CNOs), viz., DH-CNO (∼60 ± 5 nm) and LC-CNO (∼55 ± 12 nm), were developed from their respective hydrophobic cellulose nanocrystals (DH-CNC and LC-CNC) using a single-step chemical template-mediated process. This unique nanocellulose architecture was chemically and morphologically characterized by various spectroscopic and microscopic techniques. Further, the different biophysical studies documented marked the inhibition/disintegration potential of gold-conjugated LC-CNO against HEWL and Aß42 peptide aggregation. It was further observed that inhibition of protein fibrillation could be achieved within ∼10 min when the same materials were used under photoirradiation conditions. In vitro protein aggregation studies using HEK293 cells suggested that gold-conjugated LC-CNO could effectively reduce the cellular toxicity via regulation of oxidative stress and ion homeostasis. The outcome of the present study will help in designing cellulose-based novel functional nanochaperones against various neurodegenerative diseases.


Assuntos
Ouro , Nanopartículas Metálicas , Amiloide , Peptídeos beta-Amiloides , Celulose , Células HEK293 , Homeostase , Humanos , Estresse Oxidativo , Fragmentos de Peptídeos
2.
Int J Biol Macromol ; 266(Pt 1): 131108, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531523

RESUMO

Protein aggregation is a multifaceted phenomenon prevalent in the progression of neurodegenerative diseases, yielding aggregates of diverse sizes. Recently, increased attention has been directed towards early protein aggregates due to their pronounced toxicity, largely stemming from inflammation mediated by reactive oxygen species (ROS). This study advocates for a therapeutic approach focusing on inflammation control rather than mere ROS inhibition in the context of neurodegenerative disorders. Here, we introduced Camellia sinensis cellulose nanoonion (CS-CNO) as an innovative, biocompatible nanocarrier for encapsulating the phytosteroid diosgenin (DGN@CS-CNO). The resulting nano-assembly, manifesting as spherical entities with dimensions averaging ~180-220 nm, exhibits a remarkable capacity for the gradual and sustained release of approximately 39-44 % of DGN over a 60-hour time frame. DGN@CS-CNO displays a striking ability to inhibit or disassemble various phases of hen egg white lysozyme (HEWL) protein aggregates, including the early (HEWLEA) and late (HEWLLA) stages. In vitro experiments employing HEK293 cells underscore the potential of DGN@CS-CNO in mitigating cell death provoked by protein aggregation. This effect is achieved by ameliorating ROS-mediated inflammation and countering mitochondrial dysfunction, as evidenced by alterations in TNFα, TLR4, and MT-CO1 protein expression. Western blot analyses reveal that the gradual and sustained release of DGN from DGN@CS-CNO induces autophagy, a pivotal process in dismantling intracellular amyloid deposits. In summary, this study not only illuminates a path forward but also presents a compelling case for the utilization of phytosteroid as a formidable strategy against neuroinflammation incited by protein aggregation.


Assuntos
Autofagia , Celulose , Diosgenina , Mitocôndrias , Agregados Proteicos , Humanos , Autofagia/efeitos dos fármacos , Celulose/química , Celulose/farmacologia , Celulose/análogos & derivados , Diosgenina/farmacologia , Diosgenina/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Agregados Proteicos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células HEK293 , Morte Celular/efeitos dos fármacos , Muramidase/metabolismo , Muramidase/química , Animais , Nanopartículas/química , Portadores de Fármacos/química , Regulação para Cima/efeitos dos fármacos
3.
Int J Biol Macromol ; 253(Pt 2): 126821, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37690655

RESUMO

Neurodegenerative diseases (NDs) are characterized by progressive degeneration of neurons which deteriorates the brain functions. An early detection of the onset of NDs is utmost important, as it will provide the fast treatment strategies to prevent further progression of the disease. Conventionally, accurate diagnosis of the brain related disorders is difficult in their early phase. To solve this problem, nanotechnology based neurofunctional imaging and biomarker detection techniques have been developed which allows high specificity and sensitivity towards screening and diagnosis of NDs. Another challenge to treat the brain related disorders is to overcome the complex integrity of blood-brain-barrier (BBB) for the delivery of theranostic agents. Fortunately, utilization of nanomaterials has been pursued as promising strategy to address this challenge. Herein, we critically highlighted the recent improvements in the field of neurodiagnostic and therapeutic approaches involving innovative strategies for diagnosis, and inhibition of protein aggregates. We have provided particular emphasis on the use of nanotechnology which can push forward the blooming research growth in this field to win the battle against devastating NDs.


Assuntos
Nanoestruturas , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/metabolismo , Nanotecnologia/métodos , Barreira Hematoencefálica/metabolismo , Transporte Biológico
4.
Colloids Surf B Biointerfaces ; 232: 113583, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844474

RESUMO

Infectious diseases resulting from the high pathogenic potential of several bacteria possesses a major threat to human health and safety. Traditional methods used for screening of these microorganisms face major issues with respect to detection time, selectivity and specificity which may delay treatment for critically ill patients past the optimal time. Thus, a convincing and essential need exists to upgrade the existing methodologies for the fast detection of bacteria. In this context, increasing number of newly emerging nanomaterials (NMs) have been discovered for their effective use and applications in the area of diagnosis in bacterial infections. Recently, functional fluorescent nanomaterials (FNMs) are extensively explored in the field of biomedical research, particularly in developing new diagnostic tools, nanosensors, specific imaging modalities and targeted drug delivery systems for bacterial infection. It is interesting to note that organic fluorophores and fluorescent proteins have played vital role for imaging and sensing technologies for long, however, off lately fluorescent nanomaterials are increasingly replacing these due to the latter's unprecedented fluorescence brightness, stability in the biological environment, high quantum yield along with high sensitivity due to enhanced surface property etc. Again, taking advantage of their photo-excitation property, these can also be used for either photothermal and photodynamic therapy to eradicate bacterial infection and biofilm formation. Here, in this review, we have paid particular attention on summarizing literature reports on FNMs which includes studies detailing fluorescence-based bacterial detection methodologies, antibacterial and antibiofilm applications of the same. It is expected that the present review will attract the attention of the researchers working in this field to develop new engineered FNMs for the comprehensive diagnosis and treatment of bacterial infection and biofilm formation.


Assuntos
Infecções Bacterianas , Nanoestruturas , Humanos , Nanoestruturas/uso terapêutico , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/tratamento farmacológico , Diagnóstico por Imagem/métodos , Corantes Fluorescentes , Bactérias , Biofilmes
5.
Free Radic Biol Med ; 193(Pt 1): 238-252, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36257485

RESUMO

Mitochondrial dysfunction has been reported to be one of the main causes of many diseases including cancer, type2 diabetes, neurodegenerative disorders, cardiac ischemia, sepsis, muscular dystrophy, etc. Under in vitro conditions, Cytochrome C (Cyt C) maintains mitochondrial homeostasis and stimulates apoptosis, along with being a key participant in the life-supporting function of ATP synthesis. Hence, the medicinal importance of Cyt C as catalytic defense is immensely important in various mitochondrial disorders. Here, we have developed a nanomaterial via electrostatically conjugating oxidized single-wall carbon nanotube with Cyt C (Cyt C@cSWCNT) for the exogenous delivery of Cyt C. The chemical and morphological characterization of the developed Cyt C@cSWCNT was done using UV-vis, FTIR, XPS, powder XRD, TGA/DSC, TEM, etc. The developed Cyt C@cSWCNT exhibited bifunctional catalase and peroxidase activity with Km (∼ 642.7 µM and 351.6 µM) and Vmax (∼0.33 µM/s and 2.62 µM/s) values, respectively. Also, through this conjugation Cyt C was found to retain its catalytic activity even at 60 °C, excellent catalytic recyclability (at least up to 3 times), and wider pH activity (pH = 3 to 9). Cyt C@cSWCNT was found to promote intracellular ROS quenching and maintain mitochondrial membrane potential and cellular membrane integrity via Na+/K+ ion homeostasis during the H2O2 stress. Overall the present strategy provides an alternative approach for the exogenous delivery of Cyt C which can be used as nano catalytic medicine.


Assuntos
Citocromos c , Nanotubos de Carbono , Humanos , Citocromos c/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Mitocôndrias/metabolismo
6.
ACS Appl Mater Interfaces ; 14(1): 337-349, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34969244

RESUMO

Weak interactions play an important role in soft corona (SC) formation and thus help in evaluating the biological fate of the nanoparticles (NPs). Preadsorption of specific proteins on the NP surface, leading to SC formation, has been found to help NPs in evading immunosurveillance. However, the role of different preadsorbed biomolecules in determining the NP pathophysiology and cellular association, upon their re-exposure to in vivo conditions, still remains elusive. Here, differently charged gold NPs were precoated with two different blood components, viz. red blood cells and human serum albumin protein, and these were then re-exposed to human serum. Cloaking NPs with protein improved the NP colloidal stability and other physico-chemical properties along with increased cellular association. Detailed proteomic analysis suggested that protein-camouflaged NPs showed a decrease in immune-responsive proteins compared to their bare counterparts. Further, it was also observed that the secondary protein signature on the NP surface was governed by primary protein coating; however, the event was more or less NP charge-independent. This study will pave the path for future strategies to make NPs invincible to the immunosurveillance system of the body.


Assuntos
Materiais Biocompatíveis/química , Ouro/química , Nanopartículas Metálicas/química , Coroa de Proteína/química , Ouro/imunologia , Células HEK293 , Humanos , Teste de Materiais , Estrutura Molecular , Monitorização Imunológica , Tamanho da Partícula , Coroa de Proteína/imunologia , Propriedades de Superfície
7.
Int J Biol Macromol ; 193(Pt A): 1009-1020, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34728302

RESUMO

Protein corona (PC) formation remains a major hurdle in the successful delivery of nanomedicines to the target sites. Interacting proteins have been reported to undergo structural changes on the nanoparticle (NP) surface which invariably impacts their biological activities. Such structural changes are the result of opening of more binding sites of proteins to adsorb on the NP surface. The process of conversion of α-helix proteins to their ß-sheet enriched counterpart is termed as amyloidosis and in case of PC formation, NPs apparently play the crucial role of being the nucleation centres where this process takes place. Conversely, increasing numbers of artificial nano-chaperones are being used to treat the protein misfolding disorders. Anti-amyloidogenic nanomaterials (NM) have been gaining utmost importance in inhibiting Aß42 (hallmark peptide for Alzheimer's disease) and Hen egg white lysozyme (HEWL, model protein for systemic amyloidosis) aggregation. Interestingly, in this process, NPs inhibit protein ß-sheet enrichment. These two seemingly opposite roles of NPs, propelling confirmatory change onto the smorgasbord of adsorbed native proteins and the ability of NPs in inhibiting amyloidosis creates a paradox, which has not been discussed earlier. Here, we highlight the key points from both the facets of the NP behaviour with respect to their physicochemical properties and the nature of proteins they adsorb onto them to unravel the mystery. BRIEF: Protein corona formation remains a major hurdle in achieving the desired efficacy of nanomedicine. Proteins when interact with nanoparticle (NP) surface, undergo both structural and biological changes. Again, NPs are known to exhibit anti-amyloidogenic behaviour where these play the crucial role of preventing any change in their native structure. Such seemingly different roles of NPs need sincere inquisition.


Assuntos
Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Nanopartículas/química , Nanoestruturas/química , Agregação Patológica de Proteínas , Coroa de Proteína , Humanos , Tamanho da Partícula , Ligação Proteica , Coroa de Proteína/química , Coroa de Proteína/metabolismo
8.
ACS Omega ; 4(12): 14805-14819, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31552320

RESUMO

Protein aggregation leads to the transformation of proteins from their soluble form to the insoluble amyloid fibrils and these aggregates get deposited in the specific body tissues, accounting for various diseases. To prevent such an aggregation, organic-inorganic hybrid nanocomposites of iron oxide nanoparticle (NP, ∼6.5-7.0 nm)-conjugated cellulose nanocrystals (CNCs) isolated from Syzygium cumini (SC) and Pinus roxburghii (PR) were chemically synthesized. Transmission electron microscopy (TEM) images of the nanocomposites suggested that the in situ-synthesized iron oxide NPs were bound to the CNC surface in a uniform and regular fashion. The ThT fluorescence assay together with 8-anilino-1-naphthalenesulfonic acid, Congo Red, and CD studies suggested that short fiber-based SC nanocomposites showed better inhibition as well as dissociation of human serum albumin aggregates. The TEM and fluorescence microscopy studies supported similar observations. Native polyacrylamide gel electrophoresis results documented dissociation of higher protein aggregates in the presence of the developed nanocomposite. Interestingly, the dissociated proteins retained their biological function by maintaining a high amount of α-helix content. The in vitro studies with HEK-293 cells suggested that the developed nanocomposite reduces aggregation-induced cytotoxicity by intracellular reactive oxygen species scavenging and maintaining the Ca2+ ion-channel. These results indicated that the hybrid organic-inorganic nanocomposite, with simultaneous sites for hydrophobic and hydrophilic interactions, tends to provide a larger surface area for nanocomposite-protein interactions, which ultimately disfavors the nucleation step for fibrillation for protein aggregates.

9.
J Biomed Mater Res B Appl Biomater ; 107(7): 2433-2449, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30690870

RESUMO

Tissue engineering (TE) is an emerging field where alternate/artificial tissues or organ substitutes are implanted to mimic the functionality of damaged or injured tissues. Earlier efforts were made to develop natural, synthetic, or semisynthetic materials for skin equivalents to treat burns or skin wounds. Nowadays, many more tissues like bone, cardiac, cartilage, heart, liver, cornea, blood vessels, and so forth are being engineered using 3-D biomaterial constructs or scaffolds that could deliver active molecules such as peptides or growth factors. Nanomaterials (NMs) due to their unique mechanical, electrical, and optical properties possess significant opportunities in TE applications. Traditional TE scaffolds were based on hydrolytically degradable macroporous materials, whereas current approaches emphasize on controlling cell behaviors and tissue formation by nano-scale topography that closely mimics the natural extracellular matrix. This review article gives a comprehensive outlook of different organ specific NMs which are being used for diversified TE applications. Varieties of NMs are known to serve as biological alternatives to repair or replace a portion or whole of the nonfunctional or damaged tissue. NMs may promote greater amounts of specific interactions stimulated at the cellular level, ultimately leading to more efficient new tissue formation. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2433-2449, 2019.


Assuntos
Materiais Biomiméticos/química , Bioprótese , Nanoestruturas/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Matriz Extracelular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA