Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(8): e2304110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37806756

RESUMO

Atherosclerosis (AS) is the primary reason behind cardiovascular diseases, leading to approximately one-third of global deaths. Developing a novel multi-model probe to detect AS is urgently required. Macrophages are the primary cells from which AS genesis occurs. Utilizing natural macrophage membranes coated on the surface of nanoparticles is an efficient delivery method to target plaque sites. Herein, Fe3 O4 -Cy7 nanoparticles (Fe3 O4 -Cy7 NPs), functionalized using an M2 macrophage membrane and a liposome extruder for Near-infrared fluorescence and Magnetic resonance imaging, are synthesized. These macrophage membrane-coated nanoparticles (Fe3 O4 @M2 NPs) enhance the recognition and uptake using active macrophages. Moreover, they inhibit uptake using inactive macrophages and human coronary artery endothelial cells. The macrophage membrane-coated nanoparticles (Fe3 O4 @M0 NPs, Fe3 O4 @M1 NPs, Fe3 O4 @M2 NPs) can target specific sites depending on the macrophage membrane type and are related to C-C chemofactor receptor type 2 protein content. Moreover, Fe3 O4 @M2 NPs demonstrate excellent biosafety in vivo after injection, showing a significantly higher Fe concentration in the blood than Fe3 O4 -Cy7 NPs. Therefore, Fe3 O4 @M2 NPs effectively retain the physicochemical properties of nanoparticles and depict reduced immunological response in blood circulation. These NPs mainly reveal enhanced targeting imaging capability for atherosclerotic plaque lesions.


Assuntos
Aterosclerose , Nanopartículas , Humanos , Células Endoteliais , Nanopartículas/química , Imageamento por Ressonância Magnética/métodos , Aterosclerose/diagnóstico por imagem
2.
J Mater Chem B ; 11(5): 955-973, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36633185

RESUMO

Because of their excellent biologically active qualities, bioactive glasses (BGs) have been extensively used in the biomedical domain, leading to better tissue-implant interactions and promoting bone regeneration and wound healing. Aside from having attractive characteristics, BGs are appealing as a porous scaffold material. On the other hand, such porous scaffolds should enable tissue proliferation and integration with the natural bone and neighboring soft tissues and degrade at a rate that allows for new bone development while preventing bacterial colonization. Therefore, researchers have recently become interested in a different BG composition based on borate (B2O3) rather than silicate (SiO2). Furthermore, apatite synthesis in the borate-based bioactive glass (BBG) is faster than in the silicate-based bioactive glass, which slowly transforms to hydroxyapatite. This low chemical durability of BBG indicates a fast degradation process, which has become a concern for their utilization in biological and biomedical applications. To address these shortcomings, glass network modifiers, active ions, and other materials can be combined with BBG to improve the bioactivity, mechanical, and regenerative properties, including its degradation potential. To this end, this review article will highlight the details of BBGs, including their structure, properties, and medical applications, such as bone regeneration, wound care, and dental/bone implant coatings. Furthermore, the mechanism of BBG surface reaction kinetics and the role of doping ions in controlling the low chemical durability of BBG and its effects on osteogenesis and angiogenesis will be outlined.


Assuntos
Boratos , Dióxido de Silício , Boratos/química , Vidro/química , Silicatos/química , Alicerces Teciduais/química
3.
Talanta ; 265: 124772, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327664

RESUMO

Recently, photodynamic therapy (PDT) has been considered as a new strategy for atherosclerosis treatment. Targeted delivery of photosensitizer could significantly reduce its toxicity and enhance its phototherapeutic efficiency. CD68 is an antibody that can be conjugated to nano-drug delivery systems to actively target plaque sites, owing to its specific binding to CD68 receptors that are highly expressed on the surfaces of macrophage-derived foam cells. Liposomes are very popular nanocarriers due to their ability to encapsulate a wide range of therapeutic compounds including drugs, microRNAs and photosensitizers, and their ability to be surface-modified with targeting moieties leading to the development of nanocarriers with an improved targeted ability. Hence, we designed a Ce6-loaded liposomes using the film dispersion method, followed by the conjugation of CD68 antibody on the liposomal surface through a covalent crosslinking reaction, forming CD68-modified Ce6-loaded liposomes (CD68-Ce6-mediated liposomes). Flow cytometry results indicated that Ce6-containing liposomes were more effective in promoting intracellular uptake after laser irradiation. Furthermore, CD68-modified liposomes significantly strengthened the cellular recognization and thus internalization. Different cell lines have been incubated with the liposomes, and the results showed that CD68-Ce6-mediated liposomes had no significant cytotoxicity to coronary artery endothelial cells (HCAEC) under selected conditions. Interestingly, they promoted autophagy in foam cells through the increase in LC3-Ⅰ, LC3-Ⅱ expression and the decrease in p62 expression, and restrained the migration of mouse aortic vascular smooth muscle cells (MOVAS) in vitro. Moreover, the enhancement of atherosclerotic plaque stability and the reduction in the cholesterol content by CD68-Ce6-mediated liposomes were dependent on transient reactive oxygen species (ROS) generated under laser irradiation. In summary, we demonstrated that CD68-Ce6-mediated liposomes, as a photosensitizer nano-drug delivery system, have an inhibitory effect on MOVAS migration and a promotion of cholesterol efflux in foam cells, and thereby, represent promising nanocarriers for atherosclerosis photodynamic therapy.


Assuntos
Aterosclerose , Nanopartículas , Fotoquimioterapia , Placa Aterosclerótica , Porfirinas , Camundongos , Animais , Fármacos Fotossensibilizantes , Lipossomos , Placa Aterosclerótica/tratamento farmacológico , Células Endoteliais , Fotoquimioterapia/métodos , Aterosclerose/tratamento farmacológico , Porfirinas/farmacologia , Porfirinas/química , Linhagem Celular Tumoral , Nanopartículas/química
4.
Macromol Biosci ; 21(11): e2100189, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34486230

RESUMO

Three-dimensional (3D) cell culture using hydrogel scaffolds can closely resemble the natural extracellular matrix (ECM), which offers appropriate mechanical support for cells and regulates cellular behavior. In this study, a bacterial transpeptidase sortase A (SA) is used to prepare enzymatically cross-linked methacrylated hyaluronic acid (HA) peptides (HAMA-P) hydrogel, which reveals fast gel kinetics under high SA cross-linking concentrations and can be used as an injection hydrogel for tissue repair or extrusive 3D bioprinting. Furthermore, methacrylated gelatin (GelMA) is introduced to build the hybrid hydrogel (HAMA-P-GelMA) with double cross-linking of enzyme-UV, which has shown proper physical properties (mechanical properties, swelling, degradation rate, etc.) of the hydrogel matrix, and displayed desirable effects on cell viability, adhesion, and cell spreading, when compared to GelMA or HAMA-P single-network hydrogels. The HAMA-P-GelMA hybrid hydrogels provide a favorable 3D milieu for cell growth and can be used as a 3D bio-ink or a carrier of stem cells/cytokines for injectable tissue repair and filling.


Assuntos
Hidrogéis , Raios Ultravioleta , Bioimpressão , Técnicas de Cultura de Células , Humanos
5.
Colloids Surf B Biointerfaces ; 205: 111844, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34015732

RESUMO

The development of diversified biomaterials in tissue engineering has been promoted by growing research into carbon-based nanomaterials. Usually, ideal scaffold materials should possess properties similar to the extracellular matrix of natural myocardial tissue. In this study, dopamine-reduced graphene oxide (GO), was prepared and doped into gelatin methacrylate (GelMA) hydrogels, resulting in novel conductive and mechanical properties for controlling cell growth. Cardiomyocytes (CMs) cultured on PDA-rGO-incorporated hydrogels (GelMA-PDA-rGO) had greater cytocompatibility than those cultured on GelMA hydrogels, as evidenced by higher cell survival rates and up-regulation of cardiac-relevant proteins. Finally, electrical stimulation was applied to facilitate the maturation of CMs which was seeded on different hydrogels. The findings revealed that electrical stimulation of conductive hybrid hydrogel scaffolds improved the orientational order parameter of sarcomeres (OOP). In addition, propagation of intercellular pacing signals, which improves the expression of gap junction proteins was noticed, likewise calcium handling capacity was present in conductive hybrid hydrogels compared to those in pure GelMA group. This study has shown that the combination of GelMA-PDA-rGO based conductive hydrogels and electrical stimulation possessed synergistic effects for engineering a more functional and mature myocardium layer as well as further application in drug screening and disease modeling in vitro.


Assuntos
Hidrogéis , Miócitos Cardíacos , Animais , Animais Recém-Nascidos , Estimulação Elétrica , Gelatina , Grafite , Indóis , Polímeros , Ratos , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA